Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films.

Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr1-xTixO3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.

[1]  E. Salje,et al.  Domain boundary engineering , 2009 .

[2]  Dawn A. Bonnell,et al.  Controlled Patterning of Ferroelectric Domains: Fundamental Concepts and Applications , 2008 .

[3]  L. Martin,et al.  Unexpected Crystal and Domain Structures and Properties in Compositionally Graded PbZr1‐xTixO3 Thin Films , 2013, Advanced materials.

[4]  J. Ouyang,et al.  Formation of 90° elastic domains during local 180° switching in epitaxial ferroelectric thin films , 2004 .

[5]  L. Martin,et al.  Pyroelectric properties of polydomain epitaxial Pb(Zr 1-x ,Ti x )O 3 thin films , 2011 .

[6]  A. S. Yurkov,et al.  Flexoelectric effect in finite samples , 2011, 1110.0380.

[7]  Chang-Beom Eom,et al.  Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching , 2013, Nature Communications.

[8]  Sang Mo Yang,et al.  Flexoelectric rectification of charge transport in strain-graded dielectrics. , 2012, Nano letters.

[9]  S. Bu,et al.  Flexoelectric Control of Defect Formation in Ferroelectric Epitaxial Thin Films , 2014, Advanced materials.

[10]  J. Seidel Domain Walls as Nanoscale Functional Elements , 2012 .

[11]  F. Romanato,et al.  Strain relaxation in graded composition InxGa1−xAs/GaAs buffer layers , 1999 .

[12]  J. Ayers,et al.  Misfit dislocation density and strain relaxation in graded semiconductor heterostructures with arbitrary composition profiles , 2009 .

[13]  D. Scrymgeour Applications of Domain Engineering in Ferroelectrics for Photonic Applications , 2014 .

[14]  Bruce W Wessels,et al.  Ferroelectric Epitaxial Thin Films for Integrated Optics , 2007 .

[15]  Kug-Seung Lee,et al.  Domain formation in epitaxial Pb(Zr, Ti)O3 thin films , 2001 .

[16]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[17]  A. Tagantsev,et al.  Fundamentals of flexoelectricity in solids , 2013, Nanotechnology.

[18]  P. McIntyre,et al.  Mobile Ferroelastic Domain Walls in Nanocrystalline PZT Films: the Direct Piezoelectric Effect , 2011 .

[19]  Asif Islam Khan,et al.  Voltage-controlled ferroelastic switching in Pb(Zr0.2Ti0.8)O3 thin films. , 2015, Nano letters.

[20]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[21]  W. Pompe,et al.  Relative coherency strain and phase transformation history in epitaxial ferroelectric thin films , 1996 .

[22]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.

[23]  A. Ogale,et al.  Role of 90° domains in lead zirconate titanate thin films , 2000 .

[24]  L. Martin,et al.  Stationary domain wall contribution to enhanced ferroelectric susceptibility , 2014, Nature Communications.

[25]  P. Gao,et al.  Ferroelastic domain switching dynamics under electrical and mechanical excitations , 2014, Nature Communications.

[26]  L. Eric Cross,et al.  Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients , 2006 .

[27]  R. Waser,et al.  Depolarizing-field-mediated 180° switching in ferroelectric thin films with 90° domains , 2002 .

[28]  Sergei V. Kalinin,et al.  Domain wall geometry controls conduction in ferroelectrics. , 2012, Nano letters.

[29]  A. L. Roitburd,et al.  Equilibrium structure of epitaxial layers , 1976 .

[30]  A. Damodaran,et al.  Effect of 90° domain walls and thermal expansion mismatch on the pyroelectric properties of epitaxial PbZr0.2Ti0.8O3 thin films. , 2012, Physical review letters.

[31]  Shishir Pandya,et al.  Complex Evolution of Built-in Potential in Compositionally-Graded PbZr(1-x)Ti(x)O3 Thin Films. , 2015, ACS nano.

[32]  A. Tagantsev,et al.  Controlled stripes of ultrafine ferroelectric domains , 2014, Nature Communications.

[33]  Nava Setter,et al.  Compliant ferroelastic domains in epitaxial Pb(Zr,Ti)O3 thin films , 2014 .

[34]  S. Gariglio,et al.  Ferroelectric Materials: Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films (Adv. Mater. 45/2011) , 2011 .

[35]  L. Martin,et al.  Epitaxial Ferroelectric Heterostructures Fabricated by Selective Area Epitaxy of SrRuO3 Using an MgO Mask , 2012, Advanced materials.

[36]  Pavlo Zubko,et al.  Flexoelectric Effect in Solids , 2013 .

[37]  Sergei V. Kalinin,et al.  Tunable metallic conductance in ferroelectric nanodomains. , 2012, Nano letters.

[38]  A. Minor,et al.  Strain mapping at nanometer resolution using advanced nano-beam electron diffraction , 2015 .

[39]  C. Vaz,et al.  Origin of 90° domain wall pinning in Pb(Zr0.2Ti0.8)O3 heteroepitaxial thin films , 2011 .

[40]  A. Damodaran,et al.  Improved pyroelectric figures of merit in compositionally graded PbZr1-xTixO3 thin films. , 2013, ACS applied materials & interfaces.

[41]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[42]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[43]  Stephen Jesse,et al.  Band excitation in scanning probe microscopy: sines of change , 2011 .

[44]  James S. Speck,et al.  Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. II. Experimental verification and implications , 1994 .

[45]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[46]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[47]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[48]  A. Tagantsev,et al.  Controlling domain wall motion in ferroelectric thin films. , 2015, Nature nanotechnology.

[49]  Budai,et al.  Strain relaxation by domain formation in epitaxial ferroelectric thin films. , 1992, Physical review letters.

[50]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[51]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .

[52]  G. Catalan,et al.  Strain gradients in epitaxial ferroelectrics , 2004, cond-mat/0411471.

[53]  A. Müller,et al.  Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide , 2014, Nature.

[54]  A. Damodaran,et al.  Effect of 90° domain walls on the low-field permittivity of PbZr(0.2)Ti(0.8)O3 thin films. , 2012, Physical review letters.

[55]  Xiaoqing Pan,et al.  First-order morphological transition of ferroelastic domains in ferroelectric thin films , 2014 .