The band gap of Cu2ZnSnSe4: Effect of order-disorder
暂无分享,去创建一个
Jan Sendler | Susanne Siebentritt | Thomas Paul Weiss | M. Guennou | S. Siebentritt | T. Weiss | A. Redinger | Alex Redinger | B. E. Adib | G. Rey | Germain Rey | Mael Guennou | Maxime Thevenin | B. El Adib | M. Thevenin | Jan Sendler
[1] W. Warta,et al. Solar cell efficiency tables (version 43) , 2014 .
[2] Georg Kresse,et al. Cu 2 ZnSnS 4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study , 2009 .
[3] I. Babichuk,et al. Optically induced structural transformation in disordered kesterite Cu2ZnSnS4 , 2013 .
[4] T. Çagin,et al. Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4and Cu2ZnSnSe4in kesterite and stannite structures , 2011 .
[5] C. Domain,et al. Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application , 2005 .
[6] P. Fertey,et al. X-ray resonant single-crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic Cu2ZnSnS4 compound. , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.
[7] Aron Walsh,et al. Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights , 2009 .
[8] J. Chu,et al. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method , 2011 .
[9] S. Siebentritt,et al. Multiple phases of Cu2ZnSnSe4 detected by room temperature photoluminescence , 2014 .
[10] J. M. Merino,et al. Non-stoichiometry effect and disorder in Cu2ZnSnS4 thin films obtained by flash evaporation: Raman scattering investigation , 2014 .
[11] S. Schorr. The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study , 2011 .
[12] E. Aydil,et al. First principles calculation of the electronic properties and lattice dynamics of Cu2ZnSn(S1−xSex)4 , 2012 .
[13] P. Dale,et al. Different Bandgaps in Cu $_2$ ZnSnSe $_4$ : A High Temperature Coevaporation Study , 2015 .
[14] I. Repins,et al. Dielectric function spectra and critical-point energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV , 2012 .
[15] S. Siebentritt. Why are kesterite solar cells not 20% efficient? , 2013 .
[16] C. Persson. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 , 2010 .
[17] Aaron L. Stancik,et al. A simple asymmetric lineshape for fitting infrared absorption spectra , 2008 .
[18] G. Vineyard. THEORY OF ORDER-DISORDER KINETICS , 1956 .
[19] Stéphane Jobic,et al. Multinuclear (67Zn, 119Sn and 65Cu) NMR spectroscopy--an ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials. , 2013, Physical chemistry chemical physics : PCCP.
[20] Wei Wang,et al. Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .
[21] A. Pérez‐Rodríguez,et al. The three A symmetry Raman modes of kesterite in Cu2ZnSnSe4. , 2013, Optics express.
[22] Charlotte Platzer-Björkman,et al. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films , 2014 .
[23] A. Pérez‐Rodríguez,et al. Raman scattering crystalline assessment of polycrystalline Cu2ZnSnS4 thin films for sustainable photovoltaic technologies: Phonon confinement model , 2014 .
[24] A. Walsh,et al. Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers , 2013, Advanced materials.
[25] J. Yun,et al. Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values , 2010 .