The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I intron

[1]  D. Bhattacharya,et al.  Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids. , 2000 .

[2]  D. Bhattacharya,et al.  The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. , 2000, Molecular phylogenetics and evolution.

[3]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[4]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[5]  K. Jakobsen,et al.  Complex Evolutionary Patterns of tRNAUAALeu Group I Introns in Cyanobacterial Radiation , 1999 .

[6]  Susan E. Douglas,et al.  The Plastid Genome of the Cryptophyte Alga, Guillardia theta: Complete Sequence and Conserved Synteny Groups Confirm Its Common Ancestry with Red Algae , 1999, Journal of Molecular Evolution.

[7]  R. Duff,et al.  Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. , 1999, American journal of botany.

[8]  B. Paquin,et al.  Sporadic Distribution of tRNACCUArgIntrons among α-Purple Bacteria: Evidence for Horizontal Transmission and Transposition of a Group I Intron , 1999, Journal of bacteriology.

[9]  Debashish Bhattacharya,et al.  Actin Phylogeny Identifies Mesostigma viride as a Flagellate Ancestor of the Land Plants , 1998, Journal of Molecular Evolution.

[10]  R. Wickneswari,et al.  Molecular phylogeny of Dipetrocarpaceae in Southeast Asia based on nucleotide sequences of matK, trnL intron, and trnL-trnF intergenic spacer region in chloroplast DNA. , 1998, Molecular phylogenetics and evolution.

[11]  R. Bidigare,et al.  Phaeothamniophyceae Classis Nova: A New Lineage of Chromophytes Based upon Photosynthetic Pigments, rbcL Sequence Analysis and Ultrastructure. , 1998, Protist.

[12]  Yangrae Cho,et al.  The gain of three mitochondrial introns identifies liverworts as the earliest land plants , 1998, Nature.

[13]  M. Hasegawa,et al.  Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.

[14]  T. Yamada,et al.  Group I introns found in Chlorella viruses: biological implications. , 1998, Virology.

[15]  J. Palmer,et al.  The Origin and Evolution of Plastids and Their Genomes , 1998 .

[16]  Debashish Bhattacharya,et al.  Algal Phylogeny and the Origin of Land Plants , 1998 .

[17]  R. Andersen,et al.  Phylogenetic analyses of the rbcL sequences from haptophytes and heterokont algae suggest their chloroplasts are unrelated. , 1997, Molecular biology and evolution.

[18]  R. Andersen,et al.  A MOLECULAR PHYLOGENY OF THE HETEROKONT ALGAE BASED ON ANALYSES OF CHLOROPLAST‐ENCODED rbcL SEQUENCE DATA 1 , 1997 .

[19]  B. Paquin,et al.  Origin and evolution of group I introns in cyanobacterial tRNA genes , 1997, Journal of bacteriology.

[20]  K. Jakobsen,et al.  Cyanobacterial tRNA(Leu)(UAA) group I introns have polyphyletic origin. , 1997, FEMS microbiology letters.

[21]  D. Thirumalai,et al.  Folding of RNA involves parallel pathways. , 1997, Journal of molecular biology.

[22]  Peter R. Crane,et al.  The origin and early evolution of plants on land , 1997, Nature.

[23]  R. Andersen,et al.  Phylogenetic relationships of the Raphidophyceae and Xanthophyceae as inferred from nucleotide sequences of the 18S ribosomal RNA gene. , 1997, American journal of botany.

[24]  B. Mishler,et al.  Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL. , 1997, Molecular phylogenetics and evolution.

[25]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[26]  M. Fraunholz,et al.  The evolution of cryptophytes , 1997 .

[27]  J. Palmer,et al.  The origin of plastids and their spread via secondary symbiosis , 1997 .

[28]  L. Medlin,et al.  Phylogenetic relationships of the 'golden algae' (haptophytes, heterokont chromophytes) and their plastids , 1997 .

[29]  T. Friedl The evolution of the Green Algae , 1997 .

[30]  D. Bhattacharya Origins of Algae and their Plastids , 1997, Plant Systematics and Evolution.

[31]  J. Daròs,et al.  A group I plant intron accumulates as circular RNA forms with extensive 5' deletions in vivo. , 1996, RNA: A publication of the RNA Society.

[32]  S. Damberger,et al.  Nuclear-encoded rDNA group I introns: origin and phylogenetic relationships of insertion site lineages in the green algae. , 1996, Molecular biology and evolution.

[33]  D. Hibbett,et al.  Phylogenetic evidence for horizontal transmission of group I introns in the nuclear ribosomal DNA of mushroom-forming fungi. , 1996, Molecular biology and evolution.

[34]  M. Strath,et al.  Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. , 1996, Journal of molecular biology.

[35]  P. Taberlet,et al.  A phylogeny of the European gentians inferred from chloroplast trnL (UAA) intron sequences , 1996 .

[36]  D. Bhattacharya,et al.  THE PHYLOGENY OF PLASTIDS: A REVIEW BASED ON COMPARISONS OF SMALL‐SUBUNIT RIBOSOMAL RNA CODING REGIONS , 1995 .

[37]  O. Uhlenbeck,et al.  Keeping RNA happy. , 1995, RNA.

[38]  M. Melkonian,et al.  Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae). , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Biniszkiewicz,et al.  Self‐splicing group I intron in cyanobacterial initiator methionine tRNA: evidence for lateral transfer of introns in bacteria. , 1994, The EMBO journal.

[40]  S. Brown,et al.  Loss of the ORF in the SSUrDNA group I intron of one Naegleria lineage. , 1994, Nucleic acids research.

[41]  R. Gutell,et al.  A comparative database of group I intron structures. , 1994, Nucleic acids research.

[42]  P. Taberlet,et al.  The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. , 1994, Molecular biology and evolution.

[43]  R. Gutell,et al.  A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Chase,et al.  A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Takashi Yamada,et al.  Self-splicing group I introns in eukaryotic viruses , 1994, Nucleic Acids Res..

[46]  J. Manhart Phylogenetic analysis of green plant rbcL sequences. , 1994, Molecular Phylogenetics and Evolution.

[47]  M. Ragan,et al.  Variant forms of a group I intron in nuclear small-subunit rRNA genes of the marine red alga Porphyra spiralis var. amplifolia. , 1994, Molecular biology and evolution.

[48]  R. Gutell,et al.  Representation of the secondary and tertiary structure of group I introns , 1994, Nature Structural Biology.

[49]  M. Ragan,et al.  Variant forms of a self-splicing group i introns in nuclear small-subunit rrna genes (18s rdna) of the marine red alga porphyra spiralis var. Amplifolia , 1994 .

[50]  C. Delwiche,et al.  Phylogenetic Relationships of the "Green Algae" and "Bryophytes" , 1994 .

[51]  A. Monfort,et al.  Complete sequence of Euglena gracilis chloroplast DNA. , 1993, Nucleic acids research.

[52]  R. Gutell,et al.  Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites. , 1993, Journal of molecular biology.

[53]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[54]  Phillip A. Sharp,et al.  13 Splicing of Precursors to mRNA by the Spliceosome , 1993 .

[55]  M. Belfort,et al.  Introns as mobile genetic elements. , 1993, Annual review of biochemistry.

[56]  A. Mousseau,et al.  Characterization of the genes encoding phycoerythrin in the red alga Rhodella violacea: evidence for a splitting of the rpeB gene by an intron. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. Spencer,et al.  Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes , 1991, Nature.

[58]  Ming-Qun Xu,et al.  Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria , 1990, Science.

[59]  J. Palmer,et al.  An ancient group I intron shared by eubacteria and chloroplasts , 1990, Science.

[60]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[61]  J. Doyle,et al.  Isolation of plant DNA from fresh tissue , 1990 .

[62]  S. Giovannoni,et al.  Primary structure of the chloroplast small subunit ribosomal RNA gene from Chlorella vulgaris. , 1989, Nucleic acids research.

[63]  T. Cech,et al.  Conserved sequences and structures of group I introns: building an active site for RNA catalysis--a review. , 1988, Gene.

[64]  N. Saito The neighbor-joining method : A new method for reconstructing phylogenetic trees , 1987 .

[65]  B. Ganem RNA world , 1987, Nature.

[66]  T. Cech,et al.  Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena , 1982, Cell.

[67]  W. H. Longley Taxonomy and Evolution , 1933, Nature.

[68]  J. Daniels,et al.  Taxonomy and Evolution , 1914, The American Naturalist.