A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing

Ripping up a circumstellar disk During the process of star formation, a disk of gas and dust forms around the young star, controlling the accretion of more material. Once the star has formed, any leftover material in this circumstellar disk can form planets. If a binary or triple star forms at the center of the disk, theoretical models predict that tidal torques caused by their orbits can rip the disk apart, in a process known as disk tearing. Kraus et al. observed the nearby young triple-star system GW Orionis with multiple near-infrared and submillimeter telescopes, using the techniques of interferometry and polarimetry. They found evidence for multiple rings with different orientations and warping of part of the disk, both produced by disk tearing. Science, this issue p. 1233 The circumstellar disk in a nearby triple-star system has complex structures produced by disk tearing. Young stars are surrounded by a circumstellar disk of gas and dust, within which planet formation can occur. Gravitational forces in multiple star systems can disrupt the disk. Theoretical models predict that if the disk is misaligned with the orbital plane of the stars, the disk should warp and break into precessing rings, a phenomenon known as disk tearing. We present observations of the triple-star system GW Orionis, finding evidence for disk tearing. Our images show an eccentric ring that is misaligned with the orbital planes and the outer disk. The ring casts shadows on a strongly warped intermediate region of the disk. If planets can form within the warped disk, disk tearing could provide a mechanism for forming wide-separation planets on oblique orbits.

[1]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[2]  G. Lodato,et al.  Efficient dust ring formation in misaligned circumbinary discs , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  J. Milli,et al.  A circumbinary protoplanetary disk in a polar configuration , 2019, Nature Astronomy.

[4]  F. Foucart,et al.  Evolution of spin direction of accreting magnetic protostars and spin-orbit misalignment in exoplanetary systems , 2010, Proceedings of the International Astronomical Union.

[5]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[6]  A. Sicilia-Aguilar,et al.  Millimeter observations of the disk around GW Orionis , 2017, 1705.01917.

[7]  L. Hartmann,et al.  The Mass Accretion Rates of Intermediate-Mass T Tauri Stars , 2004 .

[8]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[9]  Relative Orbit Orientation in Several Resolved Multiple Systems , 2017, 1702.07905.

[10]  C. Clarke,et al.  Accretion disc response to a stellar fly-by , 1993 .

[11]  Pascal Bordé,et al.  A catalog of bright calibrator stars for 200-m baseline near-infrared stellar interferometry , 2004, astro-ph/0412251.

[12]  Sascha P. Quanz,et al.  Disks around T Tauri Stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS Polarimetric Imaging of Eight Prominent T Tauri Disks , 2018, The Astrophysical Journal.

[13]  Rafael Millan-Gabet,et al.  The Michigan Infrared Combiner (MIRC): IR imaging with the CHARA Array , 2004, SPIE Astronomical Telescopes + Instrumentation.

[14]  L. Hartmann,et al.  THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). II. DISTANCES AND STRUCTURE TOWARD THE ORION MOLECULAR CLOUDS , 2016, The Astrophysical Journal.

[15]  G. Duvert,et al.  Optimised data reduction for the AMBER/VLTI instrument , 2009 .

[16]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[17]  R. Mathieu Pre-Main-Sequence Binary Stars , 1994 .

[18]  S. Hinkley,et al.  A Multi-instrument and Multi-wavelength High Angular Resolution Study of MWC 614: Quantum Heated Particles Inside the Disk Cavity , 2018, 1803.02419.

[19]  David Mouillet,et al.  AMBER : Instrument description and first astrophysical results Special feature AMBER , the near-infrared spectro-interferometric three-telescope VLTI instrument , 2007 .

[20]  G. Lodato,et al.  Signatures of broken protoplanetary discs in scattered light and in sub-millimetre observations , 2017, 1709.08369.

[21]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[22]  Julien H. Girard,et al.  SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.

[23]  E. Tatulli,et al.  Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration. , 2007 .

[24]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[25]  Brian R. Kent,et al.  3D Scientific Visualization with Blender , 2015 .

[26]  L. Szabados,et al.  Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects , 2017, 1703.01131.

[27]  C. Dominik,et al.  Variable Outer Disk Shadowing around the Dipper Star RXJ1604.3–2130 , 2018, The Astrophysical Journal.

[28]  J. E. Pringle,et al.  Chaotic star formation and the alignment of stellar rotation with disc and planetary orbital axes , 2010 .

[29]  M. Bate On the diversity and statistical properties of protostellar discs , 2018, 1801.07721.

[30]  S. Hinkley,et al.  Spin–Orbit Alignment of the β Pictoris Planetary System , 2020, The Astrophysical Journal.

[31]  Robert D. Mathieu,et al.  The T Tauri spectroscopic binary GW Orionis , 1991 .

[32]  R. P. Butler,et al.  OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS , 2012, 1206.6105.

[33]  Valentin Christiaens,et al.  ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS , 2015, 1505.07732.

[34]  R. Klein,et al.  THE FORMATION OF LOW-MASS BINARY STAR SYSTEMS VIA TURBULENT FRAGMENTATION , 2010, 1010.3702.

[35]  John Scott Drilling,et al.  in Allen''''s Astrophysical Quantities , 2000 .

[36]  A. Merand,et al.  A catalog of bright calibrator stars for 200-m baseline near-infrared stellar interferometry , 2005 .

[37]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[38]  M. Deleuil,et al.  KEPLER-413B: A SLIGHTLY MISALIGNED, NEPTUNE-SIZE TRANSITING CIRCUMBINARY PLANET , 2014, 1401.7275.

[39]  D. Fantinel,et al.  The polarimetric imaging mode of VLT/SPHERE/IRDIS II: Characterization and correction of instrumental polarization effects. , 2019 .

[40]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[41]  G. Fuller,et al.  Submillimeter Continuum Observations of the T Tauri Spectroscopic Binary GW Orionis , 1993 .

[42]  F. Ménard,et al.  The Inner Radius of T Tauri Disks Estimated from Near-Infrared Interferometry: The Importance of Scattered Light , 2007, 0712.0012.

[43]  Keiichi Ohnaka,et al.  Detection of an Inner Gaseous Component in a Herbig Be Star Accretion Disk: Near- and Mid-Infrared Spectrointerferometry and Radiative Transfer modeling of MWC 147 , 2007, 0711.4988.

[44]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[45]  Luca Ricci,et al.  SEARCHING FOR CIRCUMPLANETARY DISKS AROUND LkCa 15 , 2014, 1404.5627.

[46]  T. Henning,et al.  GW Orionis: Inner disk readjustments in a triple system , 2014, 1407.4959.

[47]  Daniel J. Price,et al.  THE KOZAI–LIDOV MECHANISM IN HYDRODYNAMICAL DISKS , 2014, 1409.1226.

[48]  S. Casassus,et al.  SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK , 2014, 1412.4632.

[49]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[50]  D. Schertl,et al.  Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R CrA ? , 2017 .

[51]  D. Schertl,et al.  Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinae , 2009, 0911.3653.

[52]  Daniel J. Price,et al.  The impact of magnetic fields on single and binary star formation , 2007, astro-ph/0702410.

[53]  W. Welch,et al.  THE S140 CORE : APERTURE SYNTHESIS HCO+ AND SO OBSERVATIONS , 1994 .

[54]  J. Szulágyi,et al.  High-resolution ALMA Observations of HD 100546: Asymmetric Circumstellar Ring and Circumplanetary Disk Upper Limits , 2018, The Astrophysical Journal.

[55]  W. Traub,et al.  First astronomical unit scale image of the GW Orionis triple system - Direct detection of a new stellar companion , 2011, 1103.3888.

[56]  W. Benz Smooth Particle Hydrodynamics: A Review , 1990 .

[57]  C. Clarke,et al.  The role of discs in the formation of binary and multiple star systems , 1991 .

[58]  University of Exeter,et al.  On the diffusive propagation of warps in thin accretion discs , 2010, 1002.2973.

[59]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[60]  Daniel J. Price,et al.  Tearing up the disc: misaligned accretion on to a binary , 2013, 1307.0010.

[61]  L. Prato,et al.  Orbital Solution for the Spectroscopic Binary in the GW Ori Hierarchical Triple , 2017, 1711.09449.

[62]  John D. Monnier,et al.  Irregular Dust Features around Intermediate-mass Young Stars with GPI: Signs of Youth or Misaligned Disks? , 2019 .

[63]  C. U. Keller,et al.  The polarimetric imaging mode of VLT/SPHERE/IRDIS I: Description, data reduction and observing strategy , 2019 .

[64]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[65]  E. Bergin,et al.  A Kinematical Detection of Two Embedded Jupiter-mass Planets in HD 163296 , 2018, The Astrophysical Journal.

[66]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[67]  Joseph E. Rodriguez,et al.  The Architecture of the GW Ori Young Triple-star System and Its Disk: Dynamical Masses, Mutual Inclinations, and Recurrent Eclipses , 2017, 1710.03153.

[68]  F. Fekel,et al.  The properties of close multiple stars , 1981 .

[69]  H. Liu,et al.  GW Ori: Interactions between a Triple-star System and Its Circumtriple Disk in Action , 2020, The Astrophysical Journal.

[70]  J. R. Buchler,et al.  The numerical modelling of nonlinear stellar pulsations: problems and prospects. Proceedings. , 1990 .

[71]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[72]  S. Hinkley,et al.  Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142 , 2017, 1702.04780.

[73]  T. Henning,et al.  GW Ori : Inner disk readjustments in a triple system , 2014 .

[74]  Daniel J. Price,et al.  Tearing up a misaligned accretion disc with a binary companion , 2015, 1502.05410.

[75]  T. Fusco,et al.  SPHERE/ZIMPOL high resolution polarimetric imager , 2018, Astronomy & Astrophysics.

[76]  Daniel J. Price,et al.  Wave-like warp propagation in circumbinary discs – I. Analytic theory and numerical simulations , 2013, 1306.4331.

[77]  M. Bate,et al.  Planet migration: self-gravitating radiation hydrodynamical models of protoplanets with surfaces , 2010, 1006.2135.

[78]  G. Farrar,et al.  A NEW MODEL OF THE GALACTIC MAGNETIC FIELD , 2012, 1204.3662.

[79]  Dust filtration at gap edges: Implications for the spectral energy distributions of discs with embedded planets , 2006, astro-ph/0609808.

[80]  R. Rafikov Protoplanetary Disks as (Possibly) Viscous Disks , 2017, 1701.02352.

[81]  M. Schoeller,et al.  Tracing the young massive high-eccentricity binary system Theta 1 Orionis C through periastron passage , 2009, 0902.0365.