Communication between Distant Sites in RNA Polymerase II through Ubiquitylation Factors and the Polymerase CTD

[1]  P. Robinson,et al.  E3 ubiquitin ligases. , 2005, Essays in biochemistry.

[2]  H. Erdjument-Bromage,et al.  Multiple Mechanisms Confining RNA Polymerase II Ubiquitylation to Polymerases Undergoing Transcriptional Arrest , 2005, Cell.

[3]  Anton Meinhart,et al.  A structural perspective of CTD function. , 2005, Genes & development.

[4]  Kevin Struhl,et al.  Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. , 2005, Molecular cell.

[5]  D. Bushnell,et al.  Structural basis of eukaryotic gene transcription , 2005, FEBS letters.

[6]  D. Bushnell,et al.  Structural Basis of Transcription: Separation of RNA from DNA by RNA Polymerase II , 2004, Science.

[7]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[8]  J. Svejstrup Rescue of arrested RNA polymerase II complexes , 2003, Journal of Cell Science.

[9]  Joseph P Noel,et al.  Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. , 2003, Molecular cell.

[10]  M. Smerdon,et al.  Rpb4 and Rpb9 mediate subpathways of transcription‐coupled DNA repair in Saccharomyces cerevisiae , 2002, The EMBO journal.

[11]  J. Greenblatt,et al.  Regulation of transcription elongation by phosphorylation. , 2002, Biochimica et biophysica acta.

[12]  H. Erdjument-Bromage,et al.  A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage , 2002, Nature.

[13]  Christopher D. Lima,et al.  Structural Basis for E2-Mediated SUMO Conjugation Revealed by a Complex between Ubiquitin-Conjugating Enzyme Ubc9 and RanGAP1 , 2002, Cell.

[14]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[15]  P. Cramer,et al.  Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution , 2001, Science.

[16]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[17]  A. Goryachev,et al.  RNA Polymerase II Subunit Rpb9 Regulates Transcription Elongation in Vivo * , 2000, The Journal of Biological Chemistry.

[18]  P. Howley,et al.  Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. , 1999, Science.

[19]  J. Huibregtse,et al.  Rsp5 Ubiquitin-Protein Ligase Mediates DNA Damage-Induced Degradation of the Large Subunit of RNA Polymerase II in Saccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[20]  J. Greenblatt,et al.  Stimulation of Transcription by Mutations Affecting Conserved Regions of RNA Polymerase II , 1998, Journal of bacteriology.

[21]  J. Huibregtse,et al.  The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Halaban,et al.  UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Jaap,et al.  RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. , 1994, The EMBO journal.

[24]  R. Kornberg,et al.  Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Young,et al.  Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II , 1987, Cell.