Crossing-Free Acyclic Hamiltonian Path Completion for Planar st-Digraphs

In this paper we study the problem of existence of a crossing-free acyclic hamiltonian path completion (for short, HP-completion) set for embedded upward planar digraphs. In the context of book embeddings, this question becomes: given an embedded upward planar digraph G, determine whether there exists an upward 2-page book embedding of G preserving the given planar embedding. Given an embedded st-digraph G which has a crossing-free HP-completion set, we show that there always exists a crossing-free HP-completion set with at most two edges per face of G. For an embedded N-free upward planar digraph G, we show that there always exists a crossing-free acyclic HP-completion set for G which, moreover, can be computed in linear time. For a width-k embedded planar st-digraph G, we show that it can be efficiently tested whether G admits a crossing-free acyclic HP-completion set.

[1]  Michel Habib,et al.  N-free posets as generalizations of series-parallel posets , 1985, Discret. Appl. Math..

[2]  Emilio Di Giacomo,et al.  Book Embeddability of Series–Parallel Digraphs , 2006, Algorithmica.

[3]  Ivan Rival Optimal linear extensions by interchanging chains , 1983 .

[4]  Jutta Mitas Tackling the jump number of interval orders , 1991 .

[5]  Richard J. Nowakowski,et al.  Ordered sets, pagenumbers and planarity , 1989 .

[6]  Nejib Zaguia,et al.  On minimizing jumps for ordered sets , 1990 .

[7]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Directed Acyclic Graphs: Part I , 1999, SIAM J. Comput..

[8]  Michel Habib,et al.  Nombre de sauts et graphes série-parallèles , 1979, RAIRO Theor. Informatics Appl..

[9]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[10]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[11]  Hesham Hassan Ali,et al.  Minimizing setups in precedence constrained scheduling , 1988 .

[12]  Frank Harary,et al.  Graph Theory , 2016 .

[13]  Stéphan Ceroi,et al.  A Weighted Version of the Jump Number Problem on Two-Dimensional Orders is NP-Complete , 2003, Order.

[14]  Antonios Symvonis,et al.  Computing upward topological book embeddings of upward planar digraphs , 2007, J. Discrete Algorithms.

[15]  George Steiner,et al.  A linear time algorithm to find the jump number of 2-dimensional bipartite partial orders , 1987 .

[16]  P. Winkler,et al.  Minimizing setups for cycle-free ordered sets , 1982 .

[17]  Ivan Rival,et al.  Series-Parallel Planar Ordered Sets Have Pagenumber Two , 1996, GD.

[18]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Posets , 1997, SIAM J. Discret. Math..

[19]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Directed Acyclic Graphs: Part II , 1999, SIAM J. Comput..

[20]  Maciej M. Syslo,et al.  On Posets of Page Number 2 , 2005, Electron. Notes Discret. Math..

[21]  Charles J. Colbourn,et al.  Minimizing setups in ordered sets of fixed width , 1985 .

[22]  Antonios Symvonis,et al.  Crossing-Optimal Acyclic Hamiltonian Path Completion and Its Application to Upward Topological Book Embeddings , 2009, WALCOM.

[23]  Michel Habib,et al.  Jump number of dags having Dilworth number 2 , 1984, Discret. Appl. Math..

[24]  Saudi Arabia,et al.  N-FREE PLANAR ORDERED SETS THAT CONTAIN NO COVERING FOUR-CYCLE HAVE PAGENUMBER TWO , 2006 .

[25]  Antonios Symvonis,et al.  Crossing-Optimal Acyclic HP-Completion for Outerplanar st-Digraphs , 2011, J. Graph Algorithms Appl..