Die Losungen des Coulombschen Reibungsproblems fur starre Korper in zwei Dimensionen werden analysiert. Das bestimmende System von gewohnlichen Differentialgleichungen und Ungleichungen wird aufgestellt. Beispiele werden vorgelegt, die einige ungewunschte Eigenschaften dieses speziellen Reibungsgesetzes nachweisen. Hinreichende Bedingungen fur Existenz und Eindeutigkeit werden mit Hilfe der Theorie der linearen Komplementaritat hergeleitet.
The solutions to the Coulomb friction problem for rigid bodies in two dimensions are analyzed. The governing system of ordinary differential equations and inequalities is derived. Examples are presented demonstrating undesirable properties of this particular law of friction. Sufficient conditions for existence and uniqueness are given using the theory of linear complementarity.
[1]
E. Coddington,et al.
Theory of Ordinary Differential Equations
,
1955
.
[2]
M. Fiedler,et al.
On matrices with non-positive off-diagonal elements and positive principal minors
,
1962
.
[3]
G. Dantzig,et al.
COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING
,
1968
.
[4]
Katta G. Murty,et al.
On the number of solutions to the complementarity problem and spanning properties of complementary cones
,
1972
.
[5]
S. Karamardian,et al.
The complementarity problem
,
1972,
Math. Program..
[6]
P. Cundall,et al.
A discrete numerical model for granular assemblies
,
1979
.