Constraint Consistency Techniques for Continuous Domains

Ing enieure informaticienne EPFL originaire de Plaaein (FR) accet ee sur proposition du jury: Abstract Constraint Satisfaction Problems (CSPs) are ubiquitous in computer science. Many problems , ranging from resource allocation and scheduling to fault diagnosis and design, involve constraint satisfaction as an essential component. A CSP is given by a set of variables and constraints on small subsets of these variables. It is solved by nding assignments of values to the variables such that all constraints are satissed. In its most general form, a CSP is combinatorial and complex. In this thesis, we consider constraint satisfaction problems with variables in continuous, numerical domains. Contrary to most existing techniques, which focus on computing a single optimal solution, we address the problem of computing a compact representation of the space of all solutions that satisfy the constraints. This has the advantage that no optimization criterion has to be formulated beforehand, and that the space of possibilities can be explored systematically. In certain applications, such as diagnosis and design, these advantages are crucial. In consistency techniques, the solution space is represented by labels assigned to individual variables or combinations of variables. When the labeling is globally consistent, each label contains only those values or combinations of values which appear in at least one solution. This kind of labeling is a compact, sound and complete representation of the solution space, and can be combined with other reasoning methods. In practice, computing a globally consistent labeling is too complex. This is usually tackled in two ways. One way is to enforce consistencies locally, using propagation algorithms. This prunes the search space and hence reduces the subsequent search eeort. The other way is to identify simplifying properties which guarantee that global consistency can be enforced tractably using local propagation algorithms. When constraints are represented by mathematical expressions, implementing local consistency algorithms is diicult because it requires tools for solving arbitrary systems of equations. In this thesis, we propose to approximate feasible solution regions by 2 k-trees, thus providing a means of combining constraints logically rather than numerically. This representation, commonly used in computer vision and image processing, avoids using complex mathematical tools. We propose simple and stable algorithms for computing labels of arbitrary degrees of consistency using this representation. For binary constraints, it is known that simplifying convexity properties reduces the complexity of solving a CSP. These properties guarantee that local degrees of consistency are …

[1]  Rina Dechter,et al.  From Local to Global Consistency , 1990, Artif. Intell..

[2]  Irene Gargantini,et al.  An effective way to represent quadtrees , 1982, CACM.

[3]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[4]  Peter van Beek,et al.  On the Minimality and Decomposability of Constraint Networks , 1992, AAAI.

[5]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[6]  Jimmy Ho-Man Lee,et al.  Towards Practical Interval Constraint Solving in Logic Programming , 1994, ILPS.

[7]  Götz Alefeld On the Convergence of Some Interval-Arithmetic Modifications of Newton’s Method , 1984 .

[8]  Kenneth Steiglitz,et al.  Operations on Images Using Quad Trees , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Chryssostomos Chryssostomidis,et al.  Computer methods for design automation , 1992 .

[10]  T. Tanimoto A Constraint Deco osition Method uration Pro , 1993 .

[11]  Reid G. Simmons,et al.  Commonsense Arithmetic Reasoning , 1986, AAAI.

[12]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[13]  Rina Dechter,et al.  Directed Constraint Networks: A Relational Framework for Causal Modeling , 1991, IJCAI.

[14]  R Drew Drinkard,et al.  MACSYMA: A Program for Computer Algebraic Manipulation (Demonstrations and Analysis). , 1981 .

[15]  André Vellino,et al.  Constraint Arithmetic on Real Intervals , 1993, WCLP.

[16]  Frédéric Benhamou,et al.  Applying Interval Arithmetic to Real, Integer, and Boolean Constraints , 1997, J. Log. Program..

[17]  J. E. Dennis,et al.  A Brief Introduction to Quasi-Newton Methods , 1977 .

[18]  R. Baker Kearfott,et al.  Some tests of generalized bisection , 1987, TOMS.

[19]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[21]  James H. Davenport,et al.  Looking at a set of equations , 1987 .

[22]  D. J. Bell,et al.  Numerical Methods for Unconstrained Optimization , 1979 .

[23]  Anna C. Thornton,et al.  Constraint specification and satisfaction in embodiment design , 1993 .

[24]  Hoon Hong,et al.  Improvements in cad-based quantifier elimination , 1990 .

[25]  B. Choueiry Abstraction methods for resource allocation , 1994 .

[26]  Michael Sannella,et al.  The SkyBlue Constraint Solver and Its Applications , 1993, PPCP.

[27]  Ramon E. Moore Reliability in computing: the role of interval methods in scientific computing , 1988 .

[28]  Robert M. Haralick,et al.  The Consistent Labeling Problem: Part I , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Roland H. C. Yap,et al.  The CLP( R ) language and system , 1992, TOPL.

[30]  Ian F. C. Smith,et al.  Dynamic Constraint Propagation with Continuous Variables , 1992, ECAI.

[31]  Gregory D. Hager,et al.  Task-directed computation of qualitative decisions from sensor data , 1994, IEEE Trans. Robotics Autom..

[32]  E. Hansen,et al.  An interval Newton method , 1983 .

[33]  Pascal Van Hentenryck,et al.  An Efficient Arc Consistency Algorithm for a Class of CSP Problems , 1991, IJCAI.

[34]  Sargur N. Srihari,et al.  A hierarchical data structure for multidimensional digital images , 1983, CACM.

[35]  Alan K. Mackworth The Logic of Constraint Satisfaction , 1991, Artif. Intell..

[36]  David G. Luenberger,et al.  Introduction to Linear and Nonlinear Programming , 1973 .

[37]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[38]  Carlo Traverso,et al.  “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.

[39]  Eugene C. Freuder A sufficient condition for backtrack-bounded search , 1985, JACM.

[40]  J. Sack,et al.  Minimum Decompositions of Polygonal Objects , 1985 .

[41]  Boi Faltings,et al.  Computer-Aided Creative Mechanism Design , 1995, IJCAI.

[42]  Tomás Lozano-Pérez,et al.  Extending the constraint propagation of intervals , 1989, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[43]  Hanan Samet,et al.  Hierarchical data structures and algorithms for computer graphics. I. Fundamentals , 1988, IEEE Computer Graphics and Applications.

[44]  Clifford A. Shaffer,et al.  Optimal quadtree construction algorithms , 1987, Comput. Vis. Graph. Image Process..

[45]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[46]  Gilles Pesant,et al.  QUAD-CLP(R): Adding the Power of Quadratic Constraints , 1994, PPCP.

[47]  Alain Colmerauer Naive Solving of Non-linear Constraints , 1991, WCLP.

[48]  Ian F. C. Smith,et al.  Management of conflict for preliminary engineering design tasks , 1995, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[49]  Martin J. Dürst,et al.  The design and analysis of spatial data structures. Applications of spatial data structures: computer graphics, image processing, and GIS , 1991 .

[50]  W. Gellert,et al.  The VNR concise encyclopedia of mathematics , 1977 .

[51]  Carl-Erik Fröberg,et al.  Numerical mathematics - theory and computer applications , 1985 .

[52]  Yasuo Fujii,et al.  Maximization of Multivariable Functions Using Interval Analysis , 1985, Interval Mathematics.

[53]  Charles J. Petrie,et al.  On the Equivalence of Constraint Satisfaction Problems , 1990, ECAI.

[54]  D. Grigor'ev Complexity of deciding Tarski algebra , 1988 .

[55]  Joachim Hollman,et al.  Algorithms for non-linear algebraic constraints , 1993 .

[56]  Chia-Hoang Lee,et al.  Comments on Mohr and Henderson's Path Consistency Algorithm , 1988, Artif. Intell..

[57]  Pascal Van Hentenryck,et al.  The Constraint Logic Programming Language CHIP , 1988, FGCS.

[58]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[59]  Ramon E. Moore,et al.  SAFE STARTING REGIONS FOR ITERATIVE METHODS , 1977 .

[60]  M. H. van Emden,et al.  Interval Computation as Deduction in CHIP , 1993, J. Log. Program..

[61]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[62]  Elisha Sacks,et al.  Hierarchical Reasoning about Inequalities , 1987, AAAI.

[63]  Hans W. Guesgen,et al.  A Perspective of Constraint-Based Reasoning , 1992, Lecture Notes in Computer Science.

[64]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[65]  Christian Bessiere,et al.  Arc-Consistency and Arc-Consistency Again , 1993, Artif. Intell..

[66]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[67]  William S. Havens,et al.  HIERARCHICAL ARC CONSISTENCY FOR DISJOINT REAL INTERVALS IN CONSTRAINT LOGIC PROGRAMMING , 1992, Comput. Intell..

[68]  Roman Maeder,et al.  Programming in Mathematica (2nd ed.) , 1991 .

[69]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[70]  Eugene C. Freuder,et al.  The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems , 1985, Artif. Intell..

[71]  Akira Aiba,et al.  An Application of CAL to Robotics , 1991, WCLP.

[72]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[73]  Boi Faltings,et al.  Arc-Consistency for Continuous Variables , 1994, Artif. Intell..

[74]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[75]  Pascal Van Hentenryck,et al.  A Generic Arc-Consistency Algorithm and its Specializations , 1992, Artif. Intell..

[76]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[77]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[78]  Eero Hyvönen,et al.  Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach , 1992, Artif. Intell..

[79]  James Bowen,et al.  Conditional Existence of Variables in Generalised Constraint Networks , 1991, AAAI.

[80]  Vipin Kumar,et al.  Algorithms for Constraint-Satisfaction Problems: A Survey , 1992, AI Mag..

[81]  Pascal Van Hentenryck Constraint satisfaction in logic programming , 1989, Logic programming.

[82]  M. B. Clowes,et al.  On Seeing Things , 1971, Artif. Intell..

[83]  William S. Havens,et al.  Hierarchical arc consistency: exploiting structured domains in constraint satisfaction problems , 1985 .

[84]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[85]  Brian Falkenhainer,et al.  Dynamic Constraint Satisfaction Problems , 1990, AAAI.

[86]  Hoon Hong,et al.  Non-linear Real Constraints in Constraint Logic Programming , 1992, ALP.

[87]  Robert Schrag,et al.  The Quantity Lattice for Engineering Design , 1992 .

[88]  Rina Dechter,et al.  Network-based heuristics for constraint satisfaction problems , 1988 .

[89]  A. Neumaier Interval methods for systems of equations , 1990 .

[90]  Eugene C. Freuder Synthesizing constraint expressions , 1978, CACM.

[91]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[92]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[93]  Ivan E. Sutherland,et al.  Sketchpad: a man-machine graphical communication system , 1899, AFIPS '63 (Spring).

[94]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[95]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[96]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[97]  Thomas C. Henderson,et al.  Arc and Path Consistency Revisited , 1986, Artif. Intell..

[98]  B. Buchberger An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[99]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[100]  E. Hansen,et al.  Bounding solutions of systems of equations using interval analysis , 1981 .

[101]  Stephen R. Czapor,et al.  Solving Algebraic Equations: Combining Buchberger's Algorithm with Multivariate Factorization , 1989, J. Symb. Comput..

[102]  Peter van Beek,et al.  Constraint Tightness versus Global Consistency , 1994, KR.

[103]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[104]  Pedro Meseguer,et al.  Constraint Satisfaction Problems: An Overview , 1989, AI Commun..

[105]  Eugene C. Freuder,et al.  Extracting Constraint Satisfaction Subproblems , 1995, IJCAI.

[106]  Martin C. Cooper An Optimal k-Consistency Algorithm , 1989, Artif. Intell..

[107]  Ronald R. Willis,et al.  New Computer Methods for Global Optimization , 1990 .

[108]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[109]  Philippe Dague Symbolic Reasoning with Relative Orders of Magnitude , 1993, IJCAI.

[110]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[111]  Philippe David,et al.  When Functional and Bijective Constraints Make a CSP Polynomial , 1993, IJCAI.

[112]  Glenn A. Kramer,et al.  Solving Geometric Constraint Systems , 1990, AAAI.

[113]  Philip E. Gill,et al.  Numerical methods for constrained optimization , 1974 .

[114]  Peter van Beek,et al.  On the minimality and global consistency of row-convex constraint networks , 1995, JACM.

[115]  Pascal Van Hentenryck,et al.  CLP(Intervals) Revisited , 1994, ILPS.