Parameter inference for stochastic kinetic models of bacterial gene regulation: A Bayesian Approach to Systems Biology

[1]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[2]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[3]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[5]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[6]  Caroline C. Friedel,et al.  FERN – a Java framework for stochastic simulation and evaluation of reaction networks , 2008, BMC Bioinformatics.

[7]  T. Kurtz,et al.  Submitted to the Annals of Applied Probability ASYMPTOTIC ANALYSIS OF MULTISCALE APPROXIMATIONS TO REACTION NETWORKS , 2022 .

[8]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[9]  M. West,et al.  Image segmentation and dynamic lineage analysis in single‐cell fluorescence microscopy , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[10]  D. Wilkinson,et al.  Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation , 2005, Biometrics.

[11]  R. Losick,et al.  Bacillus subtilis and Its Closest Relatives , 2002 .

[12]  E. Klipp,et al.  Biochemical networks with uncertain parameters. , 2005, Systems biology.

[13]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[14]  D. McMillen,et al.  Dark proteins: Effect of inclusion body formation on quantification of protein expression , 2008, Proteins.

[15]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[16]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[17]  Andrew J. Millar,et al.  Reconstruction of transcriptional dynamics from gene reporter data using differential equations , 2008, Bioinform..

[18]  D. Gillespie The chemical Langevin equation , 2000 .

[19]  Darren J. Wilkinson,et al.  Bayesian Sequential Inference for Stochastic Kinetic Biochemical Network Models , 2006, J. Comput. Biol..

[20]  D. Wilkinson Stochastic modelling for quantitative description of heterogeneous biological systems , 2009, Nature Reviews Genetics.

[21]  Darren J. Wilkinson,et al.  Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..

[22]  J. Errington,et al.  Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. , 1993, Microbiological reviews.

[23]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[24]  R. Losick,et al.  Cell population heterogeneity during growth of Bacillus subtilis. , 2005, Genes & development.

[25]  D. Gillespie A rigorous derivation of the chemical master equation , 1992 .

[26]  D. Wilkinson,et al.  Towards an e-biology of ageing: integrating theory and data , 2003, Nature Reviews Molecular Cell Biology.

[27]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[28]  Darren J. Wilkinson,et al.  Bayesian Emulation and Calibration of a Stochastic Computer Model of Mitochondrial DNA Deletions in Substantia Nigra Neurons , 2009 .

[29]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[30]  D. Dubnau,et al.  Genetic competence in Bacillus subtilis. , 1991, Microbiological reviews.

[31]  Antoine Danchin,et al.  SubtiList: the reference database for the Bacillus subtilis genome , 2002, Nucleic Acids Res..

[32]  Darren J. Wilkinson,et al.  CaliBayes and BASIS: integrated tools for the calibration, simulation and storage of biological simulation models , 2010, Briefings Bioinform..