Likelihood analysis of non-Gaussian measurement time series

SUMMARY In this paper we provide methods for estimating non-Gaussian time series models. These techniques rely on Markov chain Monte Carlo to carry out simulation smoothing and Bayesian posterior analysis of parameters, and on importance sampling to estimate the likelihood function for classical inference. The time series structure of the models is used to ensure that our simulation algorithms are efficient.

[1]  Jim Q. Smith A Generalization of the Bayesian Steady Forecasting Model , 1979 .

[2]  Jim Q. Smith The Multiparameter Steady Model , 1981 .

[3]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[4]  M. West,et al.  Dynamic Generalized Linear Models and Bayesian Forecasting , 1985 .

[5]  J. E. Miller,et al.  A non-Gaussian state space model and application to prediction of records , 1986 .

[6]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[7]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[8]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[9]  P. D. Jong Smoothing and Interpolation with the State-Space Model , 1989 .

[10]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[11]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[12]  L. Fahrmeir Posterior Mode Estimation by Extended Kalman Filtering for Multivariate Dynamic Generalized Linear Models , 1992 .

[13]  Sylvia Frühwirth-Schnatter,et al.  Approximate Predictive Integrals for Dynamic Generalized Linear Models , 1992 .

[14]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[15]  S. Koopman,et al.  Disturbance smoother for state space models , 1993 .

[16]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[17]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[18]  J. Richard,et al.  Accelerated gaussian importance sampler with application to dynamic latent variable models , 1993 .

[19]  M. West Approximating posterior distributions by mixtures , 1993 .

[20]  N. Shephard Partial non-Gaussian state space , 1994 .

[21]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[22]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[23]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models: Comments: Reply , 1994 .

[24]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[25]  N. Shephard Local scale models: State space alternative to integrated GARCH processes , 1994 .

[26]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[27]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[28]  N. Shephard,et al.  The simulation smoother for time series models , 1995 .

[29]  K. Chan,et al.  Monte Carlo EM Estimation for Time Series Models Involving Counts , 1995 .

[30]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[31]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[32]  R. Kohn,et al.  Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .

[33]  J. Durbin,et al.  Monte Carlo maximum likelihood estimation for non-Gaussian state space models , 1997 .

[34]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .