Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest

[1]  E. Gao,et al.  Amino-functionalized Zr(IV) metal–organic framework as bifunctional acid–base catalyst for Knoevenagel condensation , 2014 .

[2]  S. Jhung,et al.  Effects of linker substitution on catalytic properties of porous zirconium terephthalate UiO-66 in acetalization of benzaldehyde with methanol , 2014 .

[3]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[4]  F. Kapteijn,et al.  The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au , 2013 .

[5]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[6]  L. Ramos,et al.  Esterification of Fatty Acids Using a Bismuth-Containing Solid Acid Catalyst , 2013 .

[7]  P. A. Arroyo,et al.  Biodiesel production by free fatty acid esterification using Lanthanum (La3+) and HZSM-5 based catalysts. , 2013, Bioresource technology.

[8]  T. Yildirim,et al.  Exceptional Mechanical Stability of Highly Porous Zirconium Metal-Organic Framework UiO-66 and Its Important Implications. , 2013, The journal of physical chemistry letters.

[9]  G. Seo,et al.  CO2 cycloaddition of styrene oxide over MOF catalysts , 2013 .

[10]  W. Schreiner,et al.  Investigation of a molybdenum-containing silica catalyst synthesized by the sol–gel process in heterogeneous catalytic esterification reactions using methanol and ethanol , 2013 .

[11]  A. Corma,et al.  An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions , 2012 .

[12]  Stefan Kaskel,et al.  Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range , 2012 .

[13]  M. Vandichel,et al.  Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks. , 2012, Angewandte Chemie.

[14]  A. Corma,et al.  MOFs as multifunctional catalysts: one-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. , 2012, Dalton transactions.

[15]  C. Serre,et al.  An evaluation of UiO-66 for gas-based applications. , 2011, Chemistry, an Asian journal.

[16]  O. Yaghi,et al.  Postsynthetic modification of a metal-organic framework for stabilization of a hemiaminal and ammonia uptake. , 2011, Inorganic chemistry.

[17]  A. Bhaumik,et al.  Synthesis, Characterization, and Biofuel Application of Mesoporous Zirconium Oxophosphates , 2011 .

[18]  Bartolomeo Civalleri,et al.  Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory , 2011 .

[19]  Rob Ameloot,et al.  An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. , 2011, Chemical communications.

[20]  J. Čejka,et al.  [Cu3(BTC)2]: A Metal–Organic Framework Catalyst for the Friedländer Reaction , 2011 .

[21]  Elsje Alessandra Quadrelli,et al.  Synthesis and Stability of Tagged UiO-66 Zr-MOFs , 2010 .

[22]  A. Corma,et al.  Cu and Au metal-organic frameworks bridge the gap between homogeneous and heterogeneous catalysts for alkene cyclopropanation reactions. , 2010, Chemistry.

[23]  A. Corma,et al.  Biomass to chemicals: Rearrangement of β-pinene epoxide into myrtanal with well-defined single-site substituted molecular sieves as reusable solid Lewis-acid catalysts , 2010 .

[24]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[25]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[26]  A. Corma,et al.  Water Resistant, Catalytically Active Nb and Ta Isolated Lewis Acid Sites, Homogeneously Distributed by Direct Synthesis in a Beta Zeolite , 2009 .

[27]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[28]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[29]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[30]  S. Kaskel,et al.  Catalytic properties of MIL-101. , 2008, Chemical communications.

[31]  Xia Yang,et al.  Preparation of mesoporous polyoxometalate-tantalum pentoxide composite catalyst and its application for biodiesel production by esterification and transesterification , 2008 .

[32]  Luiz Pereira Ramos,et al.  A new zinc hydroxide nitrate heterogeneous catalyst for the esterification of free fatty acids and the transesterification of vegetable oils , 2008 .

[33]  Mark E. Davis,et al.  Cooperative catalysis by silica-supported organic functional groups. , 2008, Chemical Society reviews.

[34]  K. Tamaki,et al.  Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2008, Journal of the American Chemical Society.

[35]  A. Sullivan,et al.  Covalently linked ethylmercaptophenyl sulfonic acid and ethylmercaptobenzyl sulfonic acid silica materials—Synthesis and catalytic activity , 2008 .

[36]  R. Prasad,et al.  Liquid–liquid biphasic synthesis of long chain wax esters using the Lewis acidic ionic liquid choline chloride·2ZnCl2 , 2007 .

[37]  A. Corma,et al.  Chemical routes for the transformation of biomass into chemicals. , 2007, Chemical reviews.

[38]  D. D. De Vos,et al.  Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). , 2006, Chemistry.

[39]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[40]  S. Bhatia,et al.  Characterization and activity of zinc acetate complex supported over functionalized silica as a catalyst for the production of isopropyl palmitate , 2006 .

[41]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[42]  A. Corma,et al.  Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs , 2002 .

[43]  M. Hanna,et al.  Role of miR-10b in breast cancer metastasis , 2010, Breast Cancer Research.

[44]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[45]  M. Martínez,et al.  Kinetic Analysis and Modeling of the Esterification of Oleic Acid and Oleyl Alcohol Using Cobalt Chloride as Catalyst , 1992 .

[46]  J. Aracil,et al.  Synthesis of esters of high molecular weight. An analog of jojoba oil. A statistical approach , 1988 .

[47]  F. Wypych,et al.  Layered metal laurates as active catalysts in the methyl/ethyl esterification reactions of lauric acid , 2012 .

[48]  F. Wypych,et al.  Raw halloysite as reusable heterogeneous catalyst for esterification of lauric acid , 2011 .

[49]  G. A. Sivasankaran,et al.  Modification of jojoba oil for lubricant formulations , 1990 .