Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds

[1]  Daniel J. Price,et al.  Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe? , 2015, 1512.01597.

[2]  P. Hopkins,et al.  Accurate, meshless methods for magnetohydrodynamics , 2015, 1505.02783.

[3]  T. Tricco Simulating astrophysical magnetic fields with smoothed particle magnetohydrodynamics , 2015, 1505.04494.

[4]  Daniel J. Price,et al.  Smoothed particle magnetohydrodynamic simulations of protostellar outflows with misaligned magnetic field and rotation axes , 2015, 1504.08322.

[5]  Federico A. Stasyszyn,et al.  A vector potential implementation for smoothed particle magnetohydrodynamics , 2014, J. Comput. Phys..

[6]  Daniel J. Price,et al.  Ambipolar diffusion in smoothed particle magnetohydrodynamics , 2014, 1408.1807.

[7]  Daniel J. Price,et al.  Collapse of a molecular cloud core to stellar densities: stellar-core and outflow formation in radiation magnetohydrodynamic simulations , 2013, 1310.1092.

[8]  Daniel J. Price,et al.  A switch to reduce resistivity in smoothed particle magnetohydrodynamics , 2013, 1309.5437.

[9]  Y. Tsukamoto,et al.  An explicit scheme for ohmic dissipation with smoothed particle magnetohydrodynamics , 2013, 1305.4436.

[10]  Daniel J. Price,et al.  Constrained hyperbolic divergence cleaning for smoothed particle magnetohydrodynamics , 2012, J. Comput. Phys..

[11]  Daniel J. Price,et al.  Collimated jets from the first core , 2012, 1203.2933.

[12]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[13]  R. Klessen,et al.  Protostellar outflows with smoothed particle magnetohydrodynamics , 2011, 1108.1040.

[14]  Andrea Lani,et al.  A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach , 2011, J. Comput. Phys..

[15]  Daniel J. Price Smoothed Particle Magnetohydrodynamics – IV. Using the vector potential , 2009, 0909.2469.

[16]  Axel Brandenburg,et al.  Magnetic field evolution in simulations with Euler potentials , 2009, 0907.1906.

[17]  K. Dolag,et al.  Magnetic field structure due to the global velocity field in spiral galaxies , 2009, 0905.0351.

[18]  Daniel J. Price,et al.  Inefficient star formation: the combined effects of magnetic fields and radiative feedback , 2009, 0904.4071.

[19]  K. Dolag,et al.  An MHD gadget for cosmological simulations , 2008, 0807.3553.

[20]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[21]  Daniel J. Price,et al.  The effect of magnetic fields on star cluster formation , 2008, 0801.3293.

[22]  Daniel J. Price,et al.  Magnetic fields and the dynamics of spiral galaxies , 2007, 0710.3558.

[23]  Daniel J. Price,et al.  The impact of magnetic fields on single and binary star formation , 2007, astro-ph/0702410.

[24]  Jan Trulsen,et al.  Multidimensional MHD Shock Tests of Regularized Smoothed Particle Hydrodynamics , 2006 .

[25]  Daniel J. Price,et al.  Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.

[26]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – I. Algorithm and tests in one dimension , 2003, astro-ph/0310789.

[27]  Daniel J. Price,et al.  Smoothed Particle Magnetohydrodynamics – II. Variational principles and variable smoothing-length terms , 2003, astro-ph/0310790.

[28]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[29]  J. Monaghan SPH compressible turbulence , 2002, astro-ph/0204118.

[30]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[31]  J. Trulsen,et al.  Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks , 2001 .

[32]  Paul J. Dellar,et al.  A note on magnetic monopoles and the one-dimensional MHD Riemann problem , 2001 .

[33]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[34]  P. Janhunen,et al.  A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .

[35]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[36]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[37]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[38]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[39]  J. Monaghan,et al.  A Switch to Reduce SPH Viscosity , 1997 .

[40]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[41]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[42]  G. J. Phillips,et al.  A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds , 1985 .

[43]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[44]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[45]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .