Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds
暂无分享,去创建一个
[1] Daniel J. Price,et al. Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe? , 2015, 1512.01597.
[2] P. Hopkins,et al. Accurate, meshless methods for magnetohydrodynamics , 2015, 1505.02783.
[3] T. Tricco. Simulating astrophysical magnetic fields with smoothed particle magnetohydrodynamics , 2015, 1505.04494.
[4] Daniel J. Price,et al. Smoothed particle magnetohydrodynamic simulations of protostellar outflows with misaligned magnetic field and rotation axes , 2015, 1504.08322.
[5] Federico A. Stasyszyn,et al. A vector potential implementation for smoothed particle magnetohydrodynamics , 2014, J. Comput. Phys..
[6] Daniel J. Price,et al. Ambipolar diffusion in smoothed particle magnetohydrodynamics , 2014, 1408.1807.
[7] Daniel J. Price,et al. Collapse of a molecular cloud core to stellar densities: stellar-core and outflow formation in radiation magnetohydrodynamic simulations , 2013, 1310.1092.
[8] Daniel J. Price,et al. A switch to reduce resistivity in smoothed particle magnetohydrodynamics , 2013, 1309.5437.
[9] Y. Tsukamoto,et al. An explicit scheme for ohmic dissipation with smoothed particle magnetohydrodynamics , 2013, 1305.4436.
[10] Daniel J. Price,et al. Constrained hyperbolic divergence cleaning for smoothed particle magnetohydrodynamics , 2012, J. Comput. Phys..
[11] Daniel J. Price,et al. Collimated jets from the first core , 2012, 1203.2933.
[12] Daniel J. Price. Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..
[13] R. Klessen,et al. Protostellar outflows with smoothed particle magnetohydrodynamics , 2011, 1108.1040.
[14] Andrea Lani,et al. A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach , 2011, J. Comput. Phys..
[15] Daniel J. Price. Smoothed Particle Magnetohydrodynamics – IV. Using the vector potential , 2009, 0909.2469.
[16] Axel Brandenburg,et al. Magnetic field evolution in simulations with Euler potentials , 2009, 0907.1906.
[17] K. Dolag,et al. Magnetic field structure due to the global velocity field in spiral galaxies , 2009, 0905.0351.
[18] Daniel J. Price,et al. Inefficient star formation: the combined effects of magnetic fields and radiative feedback , 2009, 0904.4071.
[19] K. Dolag,et al. An MHD gadget for cosmological simulations , 2008, 0807.3553.
[20] P. Teuben,et al. Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.
[21] Daniel J. Price,et al. The effect of magnetic fields on star cluster formation , 2008, 0801.3293.
[22] Daniel J. Price,et al. Magnetic fields and the dynamics of spiral galaxies , 2007, 0710.3558.
[23] Daniel J. Price,et al. The impact of magnetic fields on single and binary star formation , 2007, astro-ph/0702410.
[24] Jan Trulsen,et al. Multidimensional MHD Shock Tests of Regularized Smoothed Particle Hydrodynamics , 2006 .
[25] Daniel J. Price,et al. Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.
[26] Daniel J. Price,et al. Smoothed Particle Magnetohydrodynamics – I. Algorithm and tests in one dimension , 2003, astro-ph/0310789.
[27] Daniel J. Price,et al. Smoothed Particle Magnetohydrodynamics – II. Variational principles and variable smoothing-length terms , 2003, astro-ph/0310790.
[28] V. Springel,et al. Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.
[29] J. Monaghan. SPH compressible turbulence , 2002, astro-ph/0204118.
[30] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[31] J. Trulsen,et al. Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks , 2001 .
[32] Paul J. Dellar,et al. A note on magnetic monopoles and the one-dimensional MHD Riemann problem , 2001 .
[33] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[34] P. Janhunen,et al. A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .
[35] P. Londrillo,et al. High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.
[36] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[37] S. Cummins,et al. An SPH Projection Method , 1999 .
[38] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[39] J. Monaghan,et al. A Switch to Reduce SPH Viscosity , 1997 .
[40] J. Monaghan. Smoothed particle hydrodynamics , 2005 .
[41] M. Brio,et al. An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .
[42] G. J. Phillips,et al. A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds , 1985 .
[43] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[44] S. Orszag,et al. Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.
[45] J. Monaghan,et al. Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .