On the anatomy of the adsorption heat versus loading as a function of temperature and adsorbate for a graphitic surface.

[1]  D. Do,et al.  Explanation of the unusual peak of calorimetric heat in the adsorption of nitrogen, argon and methane on graphitized thermal carbon black. , 2008, Physical chemistry chemical physics : PCCP.

[2]  D. Do,et al.  On the physical adsorption of gases on carbon materials from molecular simulation , 2007 .

[3]  H. Do,et al.  Effects of Surface Structure and Temperature on the Surface Mediation, Layer Concentration and Molecular Projection Area: Adsorption of Argon and Nitrogen onto Graphitized Thermal Carbon Black , 2007 .

[4]  D. Do,et al.  Effects of quadrupole moments of graphite surface on adsorption of simple gases on graphitized thermal carbon black , 2007 .

[5]  D. Do,et al.  Simulation Study of Water Adsorption on Carbon Black: The Effect of Graphite Water Interaction Strength , 2007 .

[6]  D. Do,et al.  Simulation study of methanol and ethanol adsorption on graphitized carbon black , 2006 .

[7]  Simulation study of ammonia adsorption on graphitized carbon black , 2006 .

[8]  D. Do,et al.  Adsorption of carbon tetrachloride on graphitized thermal carbon black and in slit graphitic pores: five-site versus one-site potential models. , 2006, The journal of physical chemistry. B.

[9]  D. Do,et al.  Effects of potential models on the adsorption of carbon dioxide on graphitized thermal carbon black: GCMC computer simulations , 2006 .

[10]  D. Do,et al.  Adsorption of benzene on graphitized thermal carbon black: reduction of the quadrupole moment in the adsorbed phase. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[11]  D. Do,et al.  Evaluation of 1-site and 5-site models of methane on its adsorption on graphite and in graphitic slit pores. , 2005, The journal of physical chemistry. B.

[12]  D. Do,et al.  Effects of potential models in the vapor–liquid equilibria and adsorption of simple gases on graphitized thermal carbon black , 2005 .

[13]  D. Do,et al.  Adsorption of argon from sub- to supercritical conditions on graphitized thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study. , 2005, The Journal of chemical physics.

[14]  D. Do,et al.  GCMC-surface area of carbonaceous materials with N2 and Ar adsorption as an alternative to the classical BET method , 2005 .

[15]  D. Do,et al.  Effects of surface heterogeneity on the adsorption of nitrogen on graphitized thermal carbon black , 2005 .

[16]  H. Do,et al.  Adsorption of argon on homogeneous graphitized thermal carbon black and heterogeneous carbon surface. , 2005, Journal of colloid and interface science.

[17]  D. Do,et al.  Adsorption of Quadrupolar, Diatomic Nitrogen onto Graphitized Thermal Carbon Black and in Slit-Shaped Carbon Pores. Effects of Surface Mediation , 2005 .

[18]  D. Do,et al.  Adsorption of flexible n-alkane on graphitized thermal carbon black: analysis of adsorption isotherm by means of GCMC simulation , 2005 .

[19]  D. Do,et al.  Effect of surface-perturbed intermolecular interaction on adsorption of simple gases on a graphitized carbon surface. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[20]  C. Wick,et al.  Temperature effects on the retention of n-alkanes and arenes in helium-squalane gas-liquid chromatography. Experiment and molecular simulation. , 2002, Journal of chromatography. A.

[21]  M. Jaroniec,et al.  Reference Data for Argon Adsorption on Graphitized and Nongraphitized Carbon Blacks , 2001 .

[22]  Aoshima,et al.  Micropore Filling of Supercritical Xe in Micropores of Activated Carbon Fibers. , 2000, Journal of colloid and interface science.

[23]  W. Steele,et al.  Computer simulations of the adsorption of xenon on stepped surfaces , 1998 .

[24]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria of the modified Buckingham exponential-6 potential from Hamiltonian scaling grand canonical Monte Carlo , 1998 .

[25]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[26]  Meng,et al.  Multilayer adsorption of xenon, krypton, and argon on graphite: An ellipsometric study. , 1993, Physical review. B, Condensed matter.

[27]  I. Arakawa,et al.  Adsorption/desorption hysteresis in the adsorption isotherms for Kr and Xe on exfoliated graphite , 1993 .

[28]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[29]  S. Koch,et al.  Freezing transition of xenon on graphite: A computer-simulation study , 1983 .

[30]  D. Nicholson,et al.  Computer simulation and the statistical mechanics of adsorption , 1982 .

[31]  A. Thomy,et al.  Two-dimensional phase transitions as displayed by adsorption isotherms on graphite and other lamellar solids , 1981 .

[32]  Michael L. Klein,et al.  Pairwise additive effective potentials for nitrogen , 1980 .

[33]  R. Birgeneau,et al.  Structure of liquid and solid monolayer xenon on graphite , 1980 .

[34]  M. Bienfait,et al.  Transition bidimensionnelle du premier ordre; cas du xénon adsorbé sur la face (0001) du graphite , 1974 .

[35]  J. Coulomb,et al.  Auger electron spectroscopy and leed studies of adsorption isotherms: Xenon on (0001) graphite , 1973 .

[36]  William A. Steele,et al.  The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms☆ , 1973 .

[37]  W. S. Diethorn,et al.  Xenon adsorption on graphitized carbon blacks over a wide coverage range , 1967 .

[38]  B. W. Davis,et al.  A Study of Stepwise Adsorption1 , 1966 .

[39]  A. V. Kiselev,et al.  THE ABSOLUTE ADSORPTION ISOTHERMS OF VAPORS OF NITROGEN, BENZENE AND n-HEXANE, AND THE HEATS OF ADSORPTION OF BENZENE AND n-HEXANE ON GRAPHITIZED CARBON BLACKS. I. GRAPHITIZED THERMAL BLACKS , 1961 .

[40]  R. Dell,et al.  HEATS OF ADSORPTION OF POLAR MOLECULES ON CARBON SURFACES. 2. AMMONIA AND METHYLAMINE , 1955 .

[41]  D. Young,et al.  Heats of Adsorption of Argon , 1954 .