CFD code comparisons for Mars entry simulations

Axisymmetric and three-dimensional Navier-Stokes solutions with CO2 thermochemistry models, catalytic and noncatalytic surface kinetics have been computed for code-to-code comparisons between GASPv3.0, GIANTS and LAURA codes, at the Mars 2001 overshoot peak heating flight conditions. The following parameters and their effects on surface heating have been studied: gas kinetics, chemical reaction rates, diffusion rates, and wall catalysis models. The code-to-code comparative study indicates that the computed non-catalytic heating rates are influenced by the choice of chemical kinetics and transport models. For a non-ablating surface, wall catalysis is an important mechanism for transferring energy to the surface of the vehicle. Surface kinetics and diffusion models drive surface heating to similar levels irrespective of differences in the gas kinetics models, thermal non-equilibrium or numerical algorithms. The calculated solutions show that surface catalysis contributes 60% to 70% of the total heating at the non-ablating vehicle's surface for the surface kinetics models compared. D = NOMENCLATURE mass fraction of species "i" aft plate diameter (m) base diameter (m) species "i" diffusion coefficient (m reference diffusion coefficient (m s") = diffusion factor for species "i" h = static enthalpy (J ' kg" ) J kT k L/D M diffusion mass flux (kg ' m" ' s') thermal conductivity (W ' m" ' K" ) me = P = Pr = q = R =

[1]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[2]  Graham V. Candler,et al.  The computation of hypersonic ionized flows in chemical and thermal nonequlibrium , 1988 .

[3]  Graham V. Candler,et al.  Chemical-kinetic problems of future NASA missions , 1991 .

[4]  J. G. Marvin,et al.  Convective heat transfer in planetary gases , 1966 .

[5]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[6]  G. Eitelberg,et al.  Study of Aerochemistry Around a 70 degree Half Angle Blunted Cone in CO2 Environment in the High Enthalpy Shock Tunnel , 1995 .

[7]  M. Kenzie,et al.  An estimate of the chemical kinetics behind normal shock waves in mixtures of carbon dioxide and nitrogen for conditions typical of Mars entry , 1966 .

[8]  Ethiraj Venkatapathy,et al.  The multidimensional Self-Adaptive Grid code, SAGE, version 2 , 1995 .

[9]  Ethiraj Venkatapathy,et al.  Trajectory, aerothermal conditions, and thermal protection system mass for the MARS 2001 aerocapture mission , 1997 .

[10]  J. Yos,et al.  TRANSPORT PROPERTIES OF NITROGEN, HYDROGEN, OXYGEN, AND AIR TO 30,000 K , 1963 .

[11]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[12]  Jong-Hun Lee,et al.  Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles , 1984 .

[13]  C. B. Moyer,et al.  An analysis of the coupled chemically reacting boundary layer and charring ablator, part 1 Summary report , 1968 .

[14]  Michael E. Tauber,et al.  A review of high-speed, convective, heat-transfer computation methods , 1989 .

[15]  M. Tauber,et al.  The use of atmospheric braking during Mars missions , 1989 .

[16]  Kam-Pui Lee,et al.  Viscous shock layer analysis of the Martian aerothermal environment , 1992 .

[17]  Cheatwood F. McNeil,et al.  User''s Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) , 1996 .

[18]  M. E. Tauber,et al.  Mars Pathfinder Trajectory Based Heating and Ablation Calculations , 1995 .

[19]  Yih-Kanq Chen,et al.  Wake flow calculations with ablation for the Stardust Sample Return Capsule , 1997 .

[20]  A. G. Peter,et al.  Effects of Sonic Line Transition on Aerothermodynamics of the Mars Pathfinder Probe , 1995 .

[21]  L. Marraffa,et al.  Experiments and computations on a blunt body in a high enthalpy CO2 flow , 1996 .

[22]  Peter A. Gnoffo,et al.  Wake flow about a MESUR Mars entry vehicle , 1994 .

[23]  E. Venkatapathy,et al.  Mars Pathfinder computations including base-heating predictions , 1995 .

[24]  Ethiraj Venkatapathy,et al.  The multidimensional self-adaptive grid code, SAGE , 1992 .

[25]  R. Mitcheltree Aerothermodynamics of a MESUR Martian entry , 1993 .

[26]  K. Sutton,et al.  A general stagnation-point convective heating equation for arbitrary gas mixtures , 1971 .

[27]  Kam-Pui Lee,et al.  A viscous-shock-layer analysis of the Martian aerothermal environment , 1991 .

[28]  Lily Yang,et al.  Use of atmospheric braking during Mars missions , 1990 .

[29]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[30]  Ethiraj Venkatapathy,et al.  Aerothermal heating simulations with surface catalysis for the Mars 2001 aerocapture mission , 1997 .

[31]  Graham V. Candler,et al.  Hypersonic flow past 3-D configurations , 1987 .

[32]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[33]  Yih-Kanq Chen,et al.  Navier-Stokes solutions with surface catalysis for Martian atmospheric entry , 1992 .

[34]  David A. Stewart,et al.  Hypersonic convective heat transfer over 140-deg blunt cones in different gases , 1994 .

[35]  P. Gnoffo An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows , 1990 .

[36]  R. A. Mitcheltree,et al.  Wake Flow About the Mars Pathfinder Entry Vehicle , 1995 .

[37]  R Hollis Brian,et al.  Experimental and Computational Aerothermodynamics of a Mars Entry Vehicle , 1996 .