Special Lagrangian Cycles and Calabi-Yau Transitions

We construct special Lagrangian 3-spheres in non-Kähler compact threefolds equipped with the Fu-Li-Yau geometry. These nonKähler geometries emerge from topological transitions of compact CalabiYau threefolds. From this point of view, a conifold transition exchanges holomorphic 2-cycles for special Lagrangian 3-cycles.

[1]  K. Ranestad,et al.  Calabi-Yau manifolds and related geometries , 2003 .

[2]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[3]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[4]  Compactifications of heterotic theory on non-Kähler complex manifolds, I , 2003, hep-th/0301161.

[5]  R. Schoen,et al.  Minimizing area among Lagrangian surfaces: The mapping problem , 2000, math/0008244.

[6]  J. Gray,et al.  Algebroids, heterotic moduli spaces and the Strominger system , 2014, 1402.1532.

[7]  D. Phong Geometric Partial Differential Equations from Unified String Theories , 2019, 1906.03693.

[8]  M. Reid The moduli space of 3-folds withK=0 may nevertheless be irreducible , 1987 .

[9]  Yng-Ing Lee Embedded Special Lagrangian Submanifolds in Calabi-Yau Manifolds , 2003 .

[10]  A. Kas,et al.  On the versal deformation of a complex space with an isolated singularity , 1972 .

[11]  D. Waldram,et al.  Superstrings with intrinsic torsion , 2003, hep-th/0302158.

[12]  Special Lagrangian Submanifolds with Isolated Conical Singularities. III. Desingularization, The Unobstructed Case , 2003, math/0302355.

[13]  Yuguang Zhang Collapsing of Calabi-Yau manifolds and special lagrangian submanifolds , 2009, 0911.1028.

[14]  Geometric Transitions , 2004, math/0412514.

[15]  Sebastien Picard Calabi–Yau Manifolds with Torsion and Geometric Flows , 2019, Complex Non-Kähler Geometry.

[16]  Li Jun THE EXISTENCE OF SUPERSYMMETRIC STRING THEORY WITH TORSION , 2004 .

[17]  Xenia de la Ossa,et al.  The heterotic superpotential and moduli , 2015, 1509.08724.

[18]  H. Hein,et al.  Calabi-Yau manifolds with isolated conical singularities , 2016, 1607.02940.

[19]  Teng Fei,et al.  Geometric flows for the Type IIA string , 2020, Cambridge Journal of Mathematics.

[20]  D. Lust,et al.  BPS Action and Superpotential for Heterotic String Compactifications with Fluxes , 2003, hep-th/0306088.

[21]  E. Witten,et al.  CFT's from Calabi–Yau four-folds , 1999, hep-th/9906070.

[22]  Eirik Eik Svanes,et al.  The Abelian heterotic conifold , 2016, 1601.07561.

[23]  M. Graña Flux compactifications in string theory: A Comprehensive review , 2005, hep-th/0509003.

[24]  Yang Li SYZ conjecture for Calabi-Yau hypersurfaces in the Fermat family. , 2019, 1912.02360.

[25]  L. Ugarte,et al.  Non-Kaehler Heterotic String Compactifications with Non-Zero Fluxes and Constant Dilaton , 2008, 0804.1648.

[26]  Xiangwen Zhang,et al.  2 3 M ar 2 01 8 THE ANOMALY FLOW AND THE FU-YAU EQUATION 1 , 2018 .

[27]  Teng Fei,et al.  A construction of infinitely many solutions to the Strominger system , 2017, Journal of Differential Geometry.

[28]  Calibrated Fibrations , 1999, math/9911093.

[29]  Teng Fei A construction of non-Kähler Calabi–Yau manifolds and new solutions to the Strominger system , 2015, 1507.00293.

[30]  A. Strominger Superstrings with Torsion , 1986 .

[31]  Mirror symmetry is T duality , 1996, hep-th/9606040.

[32]  S. Yau,et al.  The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation , 2006, hep-th/0604063.

[33]  Valentino Tosatti Non-Kähler Calabi-Yau manifolds , 2014 .

[34]  Towards $A+B$ theory in conifold transitions for Calabi–Yau threefolds , 2015, Journal of Differential Geometry.

[35]  E. Calabi,et al.  A Class of Compact, Complex Manifolds Which are not Algebraic , 1953 .

[36]  Fabian Ruehle,et al.  Calabi-Yau manifolds and SU(3) structure , 2018, Journal of High Energy Physics.

[37]  Invariant Solutions to the Strominger System on Complex Lie Groups and Their Quotients , 2014, 1407.7641.

[38]  S. Yau,et al.  Non-Kähler SYZ Mirror Symmetry , 2014, 1409.2765.

[39]  Xiangwen Zhang,et al.  Anomaly flows. , 2016, 1610.02739.

[40]  Jian Song On a Conjecture of Candelas and de la Ossa , 2012, 1201.4358.

[41]  Xenia de la Ossa,et al.  A Metric for Heterotic Moduli , 2016, 1605.05256.

[42]  On counting special Lagrangian homology 3-spheres , 1999, hep-th/9907013.

[43]  Cristiano Spotti,et al.  Deformations of nodal Kähler–Einstein Del Pezzo surfaces with discrete automorphism groups , 2012, J. Lond. Math. Soc..

[44]  Anomaly cancellation and smooth non-Kähler solutions in heterotic string theory , 2006, hep-th/0604137.

[45]  Tristan C. Collins,et al.  Special Lagrangian submanifolds of log Calabi–Yau manifolds , 2019, 1904.08363.

[46]  P. Candelas,et al.  Rolling Among Calabi-Yau Vacua , 1990 .

[47]  B. Andreas,et al.  Solutions of the Strominger System via Stable Bundles on Calabi-Yau Threefolds , 2010, 1008.1018.

[48]  Kefeng Liu,et al.  Geometry of Hermitian manifolds , 2010, 1011.0207.

[49]  Ming-Tao Chuan Existence of Hermitian-Yang-Mills metrics under conifold transitions , 2010, 1012.3107.

[50]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[51]  Yang Li Metric SYZ conjecture and non-Archimedean geometry , 2020, Duke Mathematical Journal.

[52]  Louis Nirenberg,et al.  Interior estimates for elliptic systems of partial differential equations , 1955 .

[53]  Yat-ming Chan Desingularizations of Calabi-Yau 3-folds with conical singularities. II: the obstructed case , 2008 .

[54]  Xiangwen Zhang,et al.  Geometric flows and Strominger systems , 2015, 1508.03315.

[55]  Algebroids , 2022, Material Geometry.

[56]  M. Michelsohn On the existence of special metrics in complex geometry , 1982 .

[57]  Geometric Model for Complex Non-Kähler Manifolds with SU (3) Structure , 2002, hep-th/0212307.

[58]  C. Hull Compactifications of the heterotic superstring , 1986 .

[59]  Yang Li A gluing construction of collapsing Calabi–Yau metrics on K3 fibred 3-folds , 2018, Geometric and Functional Analysis.

[60]  A. Strominger,et al.  Fivebranes, membranes and non-perturbative string theory , 1995, hep-th/9507158.

[61]  L. Ugarte,et al.  Invariant solutions to the Strominger system and the heterotic equations of motion on solvmanifolds , 2016, 1604.02851.

[62]  The SYZ mirror symmetry conjecture for del Pezzo surfaces and rational elliptic surfaces. , 2020, 2012.05416.

[63]  Xenia de la Ossa,et al.  Holomorphic bundles and the moduli space of N=1 supersymmetric heterotic compactifications , 2014, Journal of High Energy Physics.

[64]  C. Callan,et al.  Supersymmetric String Solitons , 1991 .

[65]  R. C. Mclean Deformations of calibrated submanifolds , 1998 .

[66]  Xiangwen Zhang,et al.  Estimates for a geometric flow for the Type IIB string , 2020, Mathematische Annalen.

[67]  Black hole condensation and the unification of string vacua , 1995, hep-th/9504145.

[68]  Regularizing a Singular Special Lagrangian Variety , 2001, math/0110053.

[69]  N. Hitchin The moduli space of special Lagrangian submanifolds , 1997, dg-ga/9711002.

[70]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[71]  H. Lawson,et al.  Calibrated geometries , 1982 .

[72]  Yuguang Zhang,et al.  Continuity of Extremal Transitions and Flops for Calabi-Yau Manifolds , 2010, 1012.2940.

[73]  R. Rubio,et al.  Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry , 2015, 1503.07562.

[74]  Valentino Tosatti,et al.  Gauduchon metrics with prescribed volume form , 2015, 1503.04491.

[75]  J. Streets,et al.  Generalized Kähler geometry and the pluriclosed flow , 2011, 1109.0503.

[76]  Special Lagrangian Submanifolds with Isolated Conical Singularities. IV. Desingularization, Obstructions and Families , 2003, math/0302356.

[77]  K. Paranjape Curves on threefolds with trivial canonical bundle , 1991 .

[78]  C. B. Morrey Second Order Elliptic Systems of Differential Equations. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Symplectic Conifold Transitions , 2002, math/0209319.

[80]  L. Anderson,et al.  TASI Lectures on Geometric Tools for String Compactifications , 2018, 1804.08792.

[81]  S. Yau Smoothing 3-folds with trivial canonical bundle and ordinary double points , 1998 .