Performance Comparison of Major Classical Face Recognition Techniques

The goal of this paper is to present a critical comparison of existing classical techniques on recognition of human faces. This paper describes the four major classical face recognition techniques i.e., i) Principal Component Analysis (PCA), ii) Linear Discriminant Analysis (LDA), iii) Discrete Cosine Transform (DCT), and iv) Independent Component Analysis (ICA). Strong and weak features of these techniques are discussed. The paper then provides performance comparison and a generalized discussion of the training requirements for these face recognition techniques. Extensive experimental results with three publicly available databases (ORL, Yale, FERET databases) are provided. Performance comparison of recognizing face images taken under varying facial expressions, varying lighting condition and varying poses are discussed.

[1]  Yaniv Taigman,et al.  Descriptor Based Methods in the Wild , 2008 .

[2]  Kohei Arai Method for Image Source Separation by Means of Independent Component Analysis: ICA, Maximum Entory Method: MEM, and Wavelet Based Method: WBM , 2012 .

[3]  Bruce A. Draper,et al.  Recognizing faces with PCA and ICA , 2003, Comput. Vis. Image Underst..

[4]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[5]  Cordelia Schmid,et al.  Is that you? Metric learning approaches for face identification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[6]  Umar Mohammed,et al.  Probabilistic Models for Inference about Identity , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  M. Sarfraz Computer-Aided Intelligent Recognition Techniques and Applications , 2005 .

[8]  Alaa Eleyan,et al.  PCA and LDA Based Face Recognition Using Feedforward Neural Network Classifier , 2006, MRCS.

[9]  Fatma Zohra Chelali,et al.  Linear discriminant analysis for face recognition , 2009, 2009 International Conference on Multimedia Computing and Systems.

[10]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[11]  Tal Hassner,et al.  Similarity Scores Based on Background Samples , 2009, ACCV.

[12]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[13]  Chris H. Q. Ding,et al.  Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[14]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[15]  M. S. Bewoor,et al.  Face Recognition using Principle Component Analysis , 2012 .

[16]  Y. Asnath Victy Phamila,et al.  Discrete Cosine Transform based fusion of multi-focus images for visual sensor networks , 2014, Signal Process..

[17]  Rainer Stiefelhagen,et al.  Block Selection in the Local Appearance-based Face Recognition Scheme , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[18]  A. Ganapathiraju,et al.  LINEAR DISCRIMINANT ANALYSIS - A BRIEF TUTORIAL , 1995 .

[19]  Chris H. Q. Ding,et al.  Minimum Redundancy Feature Selection from Microarray Gene Expression Data , 2005, J. Bioinform. Comput. Biol..

[20]  Tal Hassner,et al.  Multiple One-Shots for Utilizing Class Label Information , 2009, BMVC.

[21]  E. Oja,et al.  Independent Component Analysis , 2013 .

[22]  Vijander Singh,et al.  An efficient approach for face recognition based on common eigenvalues , 2014, Pattern Recognit..

[23]  Konstantinos N. Plataniotis,et al.  Regularized discriminant analysis for the small sample size problem in face recognition , 2003, Pattern Recognit. Lett..

[24]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[25]  Jack Belzer,et al.  Encyclopedia of Computer Science and Technology , 2002 .

[26]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[27]  Jieping Ye,et al.  CPM: A Covariance-preserving Projection Method , 2006, SDM.

[28]  Derzu Omaia,et al.  2D-DCT Distance Based Face Recognition Using a Reduced Number of Coefficients , 2009, 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing.

[29]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[30]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[32]  Alex Pentland,et al.  Looking at People: Sensing for Ubiquitous and Wearable Computing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Luo Min,et al.  Face Recognition Based on PCA and 2DPCA with Single Image Sample , 2012, 2012 Ninth Web Information Systems and Applications Conference.

[34]  Frank Y. Shih,et al.  Image Processing and Pattern Recognition: Fundamentals and Techniques , 2010 .

[35]  Henrique S. Malvar,et al.  Low-complexity transform and quantization in H.264/AVC , 2003, IEEE Trans. Circuits Syst. Video Technol..

[36]  Alice J. O'Toole,et al.  Connectionist models of face processing: A survey , 1994, Pattern Recognit..

[37]  G. Jogesh Babu,et al.  Modern Statistical Methods for Astronomy: With R Applications , 2012 .

[38]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[40]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[41]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[42]  Nicolas Pinto,et al.  Beyond simple features: A large-scale feature search approach to unconstrained face recognition , 2011, Face and Gesture 2011.

[43]  M. A. Grudin,et al.  On internal representations in face recognition systems , 2000, Pattern Recognit..

[44]  Tzyy-Ping Jung,et al.  Imaging brain dynamics using independent component analysis , 2001, Proc. IEEE.

[45]  Peng Li,et al.  Similarity Metric Learning for Face Recognition , 2013, 2013 IEEE International Conference on Computer Vision.