Controlled dynamic model with boundary-value problem of minimizing a sensitivity function
暂无分享,去创建一个
[1] Alexandre Goldsztejn,et al. On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach , 2014, Journal of Global Optimization.
[2] S. Fomin,et al. Elements of the Theory of Functions and Functional Analysis , 1961 .
[3] A. Antipin. Saddle problem and optimization problem as an integrated system , 2008 .
[4] A. Antipin,et al. On methods of terminal control with boundary-value problems: Lagrange approach , 2016 .
[5] P. Pardalos,et al. Pareto optimality, game theory and equilibria , 2008 .
[6] Anatoly S. Antipin,et al. Two-person game with nash equilibrium in optimal control problems , 2012, Optim. Lett..
[7] Anatoly S. Antipin,et al. Extra-proximal methods for solving two-person nonzero-sum games , 2009, Math. Program..
[8] A. Antipin,et al. Sensitivity function: Properties and applications , 2011 .
[9] Alexander S. Poznyak,et al. Using the extraproximal method for computing the shortest-path mixed Lyapunov equilibrium in Stackelberg security games , 2017, Math. Comput. Simul..
[10] A. Ioffe,et al. Theory of extremal problems , 1979 .
[11] Vimal Singh,et al. IEEE transactions on systems, man and cybernetics. Part B, Cybernetics , 1996 .
[12] R. Pytlak. Numerical Methods for Optimal Control Problems with State Constraints , 1999 .
[13] Dynamic method of multipliers in terminal control , 2015 .
[14] A. Antipin. Sensibility Function as Convolution of System of Optimization Problems , 2010 .
[15] Eugene C. Freuder,et al. Suggestion Strategies for Constraint-Based Matchmaker Agents , 2002, Int. J. Artif. Intell. Tools.
[16] Terminal control of boundary models , 2014 .
[17] Alexander S. Poznyak,et al. A Stackelberg security game with random strategies based on the extraproximal theoretic approach , 2015, Eng. Appl. Artif. Intell..
[18] Elena V. Khoroshilova,et al. Saddle point approach to solving problem of optimal control with fixed ends , 2016, J. Glob. Optim..
[19] Extragradient method of optimal control with terminal constraints , 2012 .
[20] K. Glashoff. Elster, K.‐H./Reinhardt, R./Schäuble, M./Donath, G., Einführung in die nichtlineare Optimierung. Leipzig. BSB B. G. Teubner Verlagsgesellschaft. 1977. 299 S., M 29, – (Mathem.‐Naturwiss. Bibliothek 63) , 1979 .
[21] Elena V. Khoroshilova,et al. Extragradient-type method for optimal control problem with linear constraints and convex objective function , 2013, Optim. Lett..
[22] A. Antipin,et al. Optimal control with connected initial and terminal conditions , 2015 .
[23] N. Osmolovskii,et al. Sufficient quadratic conditions of extremum for discontinuous controls in optimal control problems with mixed constraints , 2011 .