On Applications of Fractional Derivatives in Electromagnetic Theory

In this paper, concepts of fractional-order (FO) derivatives are analysed from the point of view of applications in the electromagnetic theory. The mathematical problems related to the FO generalization of Maxwell’s equations are investigated. The most popular formulations of the fractional derivatives, i.e., Riemann-Liouville, Caputo, Grünwald-Letnikov and Marchaud definitions, are considered. Properties of these derivatives are evaluated. It is demonstrated that some of formulations of the FO derivatives have limited applicability in the electromagnetic theory. That is, the Riemann-Liouville and Caputo derivatives with finite base point have a limited applicability whereas the Grünwald-Letnikov and Marchaud derivatives lead to reasonable generalizations of Maxwell’s equations.

[1]  S. Westerlund,et al.  Capacitor theory , 1994 .

[2]  N. Engheta On fractional calculus and fractional multipoles in electromagnetism , 1996 .

[3]  N. Engheia On the role of fractional calculus in electromagnetic theory , 1997 .

[4]  V. E. Tarasov Fractional Vector Calculus and Fractional Maxwell's Equations , 2008, 0907.2363.

[5]  V. E. Tarasov Fractional integro-differential equations for electromagnetic waves in dielectric media , 2009, 1107.5892.

[6]  K. Salama,et al.  Fractional Smith Chart Theory , 2011, IEEE Microwave and Wireless Components Letters.

[7]  Manuel Duarte Ortigueira,et al.  Fractional Calculus for Scientists and Engineers , 2011, Lecture Notes in Electrical Engineering.

[8]  J. T. Tenreiro Machado,et al.  Fractional order inductive phenomena based on the skin effect , 2012 .

[9]  Khaled Jelassi,et al.  Fractional order modeling of rotor skin effect in induction machines , 2013 .

[10]  Hosein Nasrolahpour,et al.  A note on fractional electrodynamics , 2012, Commun. Nonlinear Sci. Numer. Simul..

[11]  J. Machado,et al.  A Review of Definitions for Fractional Derivatives and Integral , 2014 .

[12]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[13]  José António Tenreiro Machado,et al.  What is a fractional derivative? , 2015, J. Comput. Phys..

[14]  Manuel Duarte Ortigueira,et al.  From a generalised Helmholtz decomposition theorem to fractional Maxwell equations , 2015, Commun. Nonlinear Sci. Numer. Simul..

[15]  N. Engheta On the role of fractional calculus in electromagnetic theory , 2016 .

[16]  D. Zorica,et al.  Generalized time-fractional telegrapher’s equation in transmission line modeling , 2017 .

[17]  S. Rogosin,et al.  Letnikov vs. Marchaud: A Survey on Two Prominent Constructions of Fractional Derivatives , 2017 .

[18]  F. Ferrari Weyl and Marchaud Derivatives: A Forgotten History , 2017, 1711.08070.

[19]  Miguel Angel Moreles,et al.  Mathematical modelling of fractional order circuit elements and bioimpedance applications , 2017, Commun. Nonlinear Sci. Numer. Simul..

[20]  Lubomír Brancík,et al.  Application of Numerical Inverse Laplace Transform Methods for Simulation of Distributed Systems with Fractional-Order Elements , 2018, J. Circuits Syst. Comput..

[21]  R. Sikora,et al.  Fractional derivatives and the laws of electrical engineering , 2018, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering.

[22]  Sachin Bhalekar,et al.  Can we split fractional derivative while analyzing fractional differential equations? , 2019, Commun. Nonlinear Sci. Numer. Simul..

[23]  Tomasz P. Stefanski,et al.  Electromagnetic-based derivation of fractional-order circuit theory , 2019, Commun. Nonlinear Sci. Numer. Simul..

[24]  José António Tenreiro Machado,et al.  A review of definitions of fractional derivatives and other operators , 2019, J. Comput. Phys..

[25]  Roberto Garrappa,et al.  Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial , 2019, Mathematics.

[26]  T. Stefański,et al.  Fundamental properties of solutions to fractional-order Maxwell's equations , 2020 .

[27]  Tomasz P. Stefanski,et al.  Signal propagation in electromagnetic media described by fractional-order models , 2020, Commun. Nonlinear Sci. Numer. Simul..