Coercing assembly of donor-acceptor complexes with hydrogen-bonded frameworks

[1]  Long Chen,et al.  Hydrogen-Bonding-Induced H-Aggregation of Charge-Transfer Complexes for Ultra-Efficient Second Near-Infrared Region Photothermal Conversion , 2021, CCS Chemistry.

[2]  Anna Yusov,et al.  Hydrogen bonded frameworks: smart materials used smartly , 2021, Molecular Systems Design & Engineering.

[3]  M. J. Turner,et al.  CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals , 2021, Journal of applied crystallography.

[4]  Fan Wu,et al.  A TTF–TCNQ complex: an organic charge-transfer system with extraordinary electromagnetic response behavior , 2021 .

[5]  V. Yam,et al.  Charge-transfer processes in metal complexes enable luminescence and memory functions , 2020, Nature Reviews Chemistry.

[6]  Qichun Zhang,et al.  Multi-Functional Features of Organic Charge-Transfer Complexes: Advances and Perspectives. , 2020, Chemistry.

[7]  M. Ward,et al.  Hydrogen-bonded frameworks for molecular structure determination , 2019, Nature Communications.

[8]  Z. Pang,et al.  Efficient Two‐Photon Excited Fluorescence from Charge‐Transfer Cocrystals Based on Centrosymmetric Molecules , 2019, Advanced Optical Materials.

[9]  U. Starke,et al.  Triphenylene-Derived Electron Acceptors and Donors on Ag(111): Formation of Intermolecular Charge-Transfer Complexes with Common Unoccupied Molecular States. , 2019, Small.

[10]  Jing Wang,et al.  Remarkable pressure-induced emission enhancement based on intermolecular charge transfer in halogen bond-driven dual-component co-crystals. , 2018, Physical chemistry chemical physics : PCCP.

[11]  Mingliang Wang,et al.  Study of charge transfer interaction modes in the mixed Donor-Acceptor cocrystals of pyrene derivatives and TCNQ: A combined structural, thermal, spectroscopic, and hirshfeld surfaces analysis , 2018, Journal of Solid State Chemistry.

[12]  M. Ward,et al.  Guest Exchange through Facilitated Transport in a Seemingly Impenetrable Hydrogen-Bonded Framework. , 2018, Journal of the American Chemical Society.

[13]  Daoben Zhu,et al.  Organic Donor-Acceptor Complexes as Novel Organic Semiconductors. , 2017, Accounts of chemical research.

[14]  Qichun Zhang,et al.  Recent progress on intramolecular charge-transfer compounds as photoelectric active materials , 2017, Science China Materials.

[15]  Chunxiang Xu,et al.  Molecular Marriage via Charge Transfer Interaction in Organic Charge Transfer Co-Crystals toward Solid-State Fluorescence Modulation , 2017 .

[16]  M. Ward,et al.  Versatile and Resilient Hydrogen-Bonded Host Frameworks. , 2016, Accounts of chemical research.

[17]  C. Richter,et al.  Polymorphism in the 1:1 Charge‐Transfer Complex DBTTF–TCNQ and Its Effects on Optical and Electronic Properties , 2016, Advanced electronic materials.

[18]  K. Rissanen,et al.  Systematic Construction of Ternary Cocrystals by Orthogonal and Robust Hydrogen and Halogen Bonds. , 2016, Journal of the American Chemical Society.

[19]  M. Ward,et al.  Regulating the architectures of hydrogen-bonded frameworks through topological enforcement. , 2015, Journal of the American Chemical Society.

[20]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[21]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[22]  C. Day,et al.  Charge Transport Properties of Perylene–TCNQ Crystals: The Effect of Stoichiometry , 2014 .

[23]  Oana D. Jurchescu,et al.  Charge-transfer complexes: new perspectives on an old class of compounds , 2014 .

[24]  M. Ward,et al.  Isolation and Stabilization of a Pheromone in Crystalline Molecular Capsules , 2013 .

[25]  T. Inabe,et al.  What Happens at the Interface between TTF and TCNQ Crystals (TTF = Tetrathiafulvalene and TCNQ = 7,7,8,8-Tetracyanoquinodimethane)? , 2012 .

[26]  Angiolina Comotti,et al.  Supramolecular Archimedean Cages Assembled with 72 Hydrogen Bonds , 2011, Science.

[27]  M. Ward,et al.  Controlled orientation of polyconjugated guest molecules in tunable host cavities. , 2010, Journal of the American Chemical Society.

[28]  Nancy R. Sottos,et al.  Restoration of Conductivity with TTF‐TCNQ Charge‐Transfer Salts , 2010 .

[29]  M. Ward,et al.  Directed organization of dye aggregates in hydrogen-bonded host frameworks , 2009 .

[30]  M. Ward,et al.  Guest Molecules Confined in Amphipathic Crystals as Revealed by X-ray Diffraction and MAS NMR† , 2009 .

[31]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[32]  J. Mannhart,et al.  Organic electronics: when TTF met TCNQ. , 2008, Nature materials.

[33]  M. Ward,et al.  Architectural diversity and elastic networks in hydrogen-bonded host frameworks: from molecular jaws to cylinders. , 2007, Journal of the American Chemical Society.

[34]  Anatoliy N Sokolov,et al.  Enforced face-to-face stacking of organic semiconductor building blocks within hydrogen-bonded molecular cocrystals. , 2006, Journal of the American Chemical Society.

[35]  M. Spackman,et al.  Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. , 2004, Acta crystallographica. Section B, Structural science.

[36]  M. Ward,et al.  Shape-Selective Separation of Molecular Isomers with Tunable Hydrogen-Bonded Host Frameworks , 2001 .

[37]  M. Ward,et al.  Metric engineering of soft molecular host frameworks. , 2001, Accounts of chemical research.

[38]  D. Braga,et al.  Anions Derived from Squaric Acid Form Interionic π‐Stack and Layered, Hydrogen‐Bonded Superstructures with Organometallic Sandwich Cations: The Magnetic Behaviour of Crystalline [(η6‐C6H6)2Cr]+[HC4O4]− , 2000 .

[39]  M. Ward,et al.  Nanoporous Molecular Sandwiches: Pillared Two-Dimensional Hydrogen-Bonded Networks with Adjustable Porosity , 1997, Science.

[40]  P. G. Byrom,et al.  A novel definition of a molecule in a crystal , 1997 .

[41]  Michael D. Ward,et al.  Guanidinium Para-Substituted Benzenesulfonates: Competitive Hydrogen Bonding in Layered Structures and the Design of Nonlinear Optical Materials , 1994 .

[42]  M. Ward,et al.  Layered Materials by Molecular Design: Structural Enforcement by Hydrogen Bonding in Guanidinium Alkane- and Arenesulfonates , 1994 .

[43]  M. Ward Linear chain organometallic donor-acceptor complexes and one-dimensional alloys. Synthesis and structure of [(.eta.6-C6Me3H3)2M][C6(CN)6] (M = iron, ruthenium) , 1987 .

[44]  T. Kistenmacher,et al.  DBTTF-TCNQ: A fractionally-charged organic salt with a mixed-stack crystalline motif , 1981 .

[45]  D. Cowan,et al.  Degree of charge transfer in organic conductors by infrared absorption spectroscopy , 1981 .

[46]  C. S. Jacobsen,et al.  Zero-Pressure Organic Superconductor: Di-(Tetramethyltetraselenafulvalenium)-Perchlorate [ ( TMTSF ) 2 Cl O 4 ] , 1981 .

[47]  V. Lee,et al.  Discovery of a Neutral-to-Ionic Phase Transition in Organic Materials , 1981 .

[48]  J. Ferraris,et al.  CRYSTAL STRUCTURE AND MADELUNG ENERGY FOR THE CHARGE-TRANSFER COMPLEX TETRATHIAFULVALENE-2,5-DIFLURO-7,7,8,8-TETRACYANO-P-QUINODIMETHANE, TTF-2,5-TCNQF2 - OBSERVATIONS ON A DIMERIZED SEGREGATED STACK MOTIF. , 1981 .

[49]  K. Toyoda,et al.  Raman spectra of conducting TCNQ salts; Estimation of the degree of charge transfer from vibrational frequencies , 1980 .

[50]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[51]  U. Shmueli,et al.  Structure and packing arrangement of molecular compounds. VII. 7,7,8,8‐Tetracyanoquinodimethane–naphthalene (1:1) , 1976 .

[52]  D. L. Jeanmaire,et al.  Resonance Raman spectroelectrochemistry. 2. Scattering spectroscopy accompanying excitation of the lowest 2B1u excited state of the tetracyanoquinodimethane anion radical , 1976 .

[53]  T. Kistenmacher,et al.  The crystal structure of the 1:1 radical cation–radical anion salt of 2,2'-bis-l,3-dithiole (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) , 1974 .

[54]  John P. Ferraris,et al.  Electron transfer in a new highly conducting donor-acceptor complex , 1973 .

[55]  T. Takenaka Molecular vibrational spectra of tetracyanoquinodimethane and tetracyanoquinodimethane-d4 crystals , 1971 .

[56]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .

[57]  M. Pope,et al.  Photogeneration of Charge Carriers in Tetracene , 1966 .

[58]  M. Pope,et al.  Electroluminescence and Band Gap in Anthracene , 1965 .

[59]  K. Trueblood,et al.  The crystal and molecular structure of 7,7,8,8‐tetracyanoquinodimethane , 1965 .

[60]  M. Pope,et al.  Double‐Quantum External Photoelectric Effect in Organic Crystals , 1965 .

[61]  P. Magnante,et al.  Electroluminescence in Organic Crystals , 1963 .