A trinity of duality: Non-separable planar maps, β(1, 0)-trees and synchronized intervals
暂无分享,去创建一个
[1] Marc Noy,et al. On the number of self-dual rooted maps , 2014, Eur. J. Comb..
[2] Viviane Pons,et al. Counting smaller trees in the Tamari order , 2012 .
[3] Mireille Bousquet-Mélou,et al. The Number of Intervals in the m-Tamari Lattices , 2011, Electron. J. Comb..
[4] Sergey Kitaev,et al. Decompositions and statistics for β(1, 0)-trees and nonseparable permutations , 2009, Adv. Appl. Math..
[5] Nicolas Bonichon,et al. Intervals in Catalan lattices and realizers of triangulations , 2009, J. Comb. Theory, Ser. A.
[6] Sergey Kitaev,et al. An involution on β(1, 0)-trees , 2013, Adv. Appl. Math..
[7] Wenjie Fang,et al. The enumeration of generalized Tamari intervals , 2015, Eur. J. Comb..
[8] Gilles Schaeffer,et al. A Bijective Census of Nonseparable Planar Maps , 1998, J. Comb. Theory, Ser. A.
[9] Serge Dulucq,et al. Permutations with forbidden subsequences and nonseparable planar maps , 1996, Discret. Math..
[10] Sergey Kitaev,et al. Patterns in Permutations and Words , 2011, Monographs in Theoretical Computer Science. An EATCS Series.
[11] Viviane Pons,et al. Two bijections on Tamari Intervals , 2013, 1311.4382.
[12] Robert Cori,et al. Description trees and Tutte formulas , 2003, Theor. Comput. Sci..
[13] Xavier Gérard Viennot,et al. The enumeration of generalized Tamari intervals , 2017 .
[14] F. Chapoton,et al. Sur le nombre d'intervalles dans les treillis de Tamari , 2006 .
[15] Sergey Kitaev,et al. Enumeration of Fixed Points of an Involution on β(1, 0)-Trees , 2014, Graphs Comb..
[16] W. T. Tutte. A Census of Planar Maps , 1963, Canadian Journal of Mathematics.