Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg-2Zn-0.5Sr alloy

[1]  Yufeng Zheng,et al.  Microstructure, Mechanical Properties, Corrosion Behavior and Biocompatibility of As-Extruded Biodegradable Mg-3Sn-1Zn-0.5Mn Alloy , 2016 .

[2]  Lu Chen,et al.  AZ91 Magnesium Alloy/Porous Hydroxyapatite Composite for Potential Application in Bone Repair , 2016 .

[3]  Yufeng Zheng,et al.  Magnesium-calcium/hydroxyapatite (Mg-Ca/HA) composites with enhanced bone differentiation properties for orthopedic applications , 2016 .

[4]  R. Zeng,et al.  In vitro Degradation of Pure Mg for Esophageal Stent in Artificial Saliva , 2016 .

[5]  N. Cheung,et al.  Interconnection of Zn content, macrosegregation, dendritic growth, nature of intermetallics and hardness in directionally solidified Mg-Zn alloys , 2016 .

[6]  P. Chartrand,et al.  Experimental study of the crystal structure of the Mg15 − xZnxSr3 ternary solid solution in the Mg–Zn–Sr system at 300 °C , 2015 .

[7]  Q. Peng,et al.  Microstructures, mechanical and cytocompatibility of degradable Mg–Zn based orthopedic biomaterials , 2014 .

[8]  M. Cerruti,et al.  Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. , 2014, Materials science & engineering. C, Materials for biological applications.

[9]  M. Medraj,et al.  Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys , 2014 .

[10]  Yufeng Zheng,et al.  Novel Magnesium Alloys Developed for Biomedical Application: A Review , 2013 .

[11]  D. Shum-Tim,et al.  Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. , 2013, Acta biomaterialia.

[12]  Yufeng Zheng,et al.  In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. , 2012, Acta biomaterialia.

[13]  M. Manuel,et al.  Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. , 2012, Journal of the mechanical behavior of biomedical materials.

[14]  S. Kalkura,et al.  Fibrous growth of strontium substituted hydroxyapatite and its drug release , 2011 .

[15]  K. Hong,et al.  Comparative property study on extruded Mg–HAP and ZM61–HAP composites , 2010 .

[16]  Yufeng Zheng,et al.  Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites , 2010 .

[17]  M. Escudero,et al.  Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. , 2010, Acta biomaterialia.

[18]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[19]  Yingwei Song,et al.  Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid , 2009 .

[20]  M. Störmer,et al.  Biodegradable magnesium-hydroxyapatite metal matrix composites. , 2007, Biomaterials.

[21]  M. Gazzano,et al.  Strontium-substituted hydroxyapatite nanocrystals. , 2007 .

[22]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[23]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[24]  S. A. El-Rahman Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). , 2003, Pharmacological research.

[25]  C. Christiansen,et al.  Incorporation and distribution of strontium in bone. , 2001, Bone.

[26]  L. Nicolais,et al.  Composite Materials for Biomedical Applications , 1980, The International journal of artificial organs.