Nanopore Arrays for Stable and Functional Free‐Standing Lipid Bilayers

[1]  S. Evans,et al.  Discrete membrane arrays. , 2000, Journal of biotechnology.

[2]  G. Favero,et al.  Glutamate receptor incorporated in a mixed hybrid bilayer lipid membrane array, as a sensing element of a biosensor working under flowing conditions. , 2005, Journal of the American Chemical Society.

[3]  George M Whitesides,et al.  Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. , 2003, Biophysical journal.

[4]  Andreas Janshoff,et al.  Transport across artificial membranes–an analytical perspective , 2006, Analytical and bioanalytical chemistry.

[5]  G. López,et al.  Biomimetic Molecular Assemblies on Glass and Mesoporous Silica Microbeads for Biotechnology , 2003 .

[6]  Horst Vogel,et al.  Ion-Channel Gating in Transmembrane Receptor Proteins: Functional Activity in Tethered Lipid Membranes. , 1999, Angewandte Chemie.

[7]  Toru Ide,et al.  A novel method for artificial lipid-bilayer formation. , 2005, Biosensors & bioelectronics.

[8]  Youxing Jiang,et al.  Functional analysis of an archaebacterial voltage-dependent K+ channel , 2003, Nature.

[9]  A. Szewczyk,et al.  The Gef1 protein of Saccharomyces cerevisiae is associated with chloride channel activity. , 2002, Biochemical and biophysical research communications.

[10]  L. Tamm,et al.  Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins. , 2003, Biophysical journal.

[11]  Yumi Yoshida,et al.  Ion transport across a bilayer lipid membrane facilitated by valinomycin , 2004 .

[12]  Claudia Steinem,et al.  Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina. , 2004, Biophysical journal.

[13]  Helmut Schift,et al.  Controlled co-evaporation of silanes for nanoimprint stamps , 2005 .

[14]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[15]  F Bezanilla,et al.  Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip. , 2001, Biophysical journal.

[16]  R. Naumann,et al.  Potassium ion transport by valinomycin across a Hg-supported lipid bilayer. , 2005, Journal of the American Chemical Society.

[17]  S. White,et al.  Formation of planar bilayer membranes from lipid monolayers. A critique. , 1976, Biophysical journal.

[18]  Shoji Takeuchi,et al.  Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[19]  P. Bednarczyk,et al.  Reconstitution of brain mitochondria inner membrane into planar lipid bilayer. , 2005, Acta neurobiologiae experimentalis.

[20]  Helmut Schift,et al.  High volume fabrication of customised nanopore membrane chips , 2003 .

[21]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Andreas Offenhäusser,et al.  Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. , 2005, Biophysical journal.

[23]  R. E. Miles,et al.  Single Ion Channel Sensitivity in Suspended Bilayers on Micromachined Supports , 2001 .

[24]  M. Winterhalter Black lipid membranes , 2000 .

[25]  G. Schwarz,et al.  Melittin induced voltage-dependent conductance in DOPC lipid bilayers. , 1991, Biochimica et biophysica acta.

[26]  Bruce Cornell,et al.  Tethered Lipid Bilayer Membranes: Formation and Ionic Reservoir Characterization , 1998 .

[27]  Claudia Steinem,et al.  Channel activity of OmpF monitored in nano-BLMs. , 2006, Biophysical journal.