Stochastic Frontier Analysis using Stata

This article describes sfcross and sfpanel, two new Stata commands for the estimation of cross-sectional and panel-data stochastic frontier models. sfcross extends the capabilities of the frontier command by including additional models (Greene, 2003, Journal of Productivity Analysis 19: 179–190; Wang, 2002, Journal of Productivity Analysis 18: 241–253) and command functionalities, such as the possibility of managing complex survey data characteristics. Similarly, sfpanel allows one to fit a much wider range of time-varying inefficiency models compared with the xtfrontier command, including the model of Cornwell, Schmidt, and Sickles (1990, Journal of Econometrics 46: 185–200); the model of Lee and Schmidt (1993, in The Measurement of Productive Efficiency: Techniques and Applications), a production frontier model with flexible temporal variation in technical efficiency; the flexible model of Kumbhakar (1990, Journal of Econometrics 46: 201–211); the inefficiency effects model of Battese and Coelli (1995 Empirical Economics 20: 325–332); and the "true" fixed- and random-effects models of Greene (2005a, Journal of Econometrics 126: 269–303). A brief overview of the stochastic frontier literature, a description of the two commands and their options, and examples using simulated and real data are provided. Copyright 2013 by StataCorp LP.

[1]  G. Battese,et al.  A model for technical inefficiency effects in a stochastic frontier production function for panel data , 1995 .

[2]  Peter Schmidt,et al.  One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels , 2002 .

[3]  P. Schmidt,et al.  Production frontiers with cross-sectional and time-series variation in efficiency levels , 1990 .

[4]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[5]  W. Greene Fixed and Random Effects in Stochastic Frontier Models , 2002 .

[6]  A. U.S.,et al.  FORMULATION AND ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION FUNCTION MODELS , 2001 .

[7]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[8]  Federico Belotti,et al.  Consistent Estimation of the 'True' Fixed-Effects Stochastic Frontier Model , 2012 .

[9]  Peter Schmidt,et al.  GMM estimation of linear panel data models with time-varying individual effects , 2001 .

[10]  Peter Schmidt,et al.  Consistent estimation of the fixed effects stochastic frontier model , 2014 .

[11]  William H. Greene,et al.  Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function , 2000 .

[12]  Rafael A. Cuesta A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms , 2000 .

[13]  CL Huang,et al.  Estimation of a non-neutral stochastic frontier production function , 1994 .

[14]  W. Greene Maximum likelihood estimation of econometric frontier functions , 1980 .

[15]  David M. Drukker,et al.  Generating Halton Sequences using Mata , 2006 .

[16]  Peter Schmidt,et al.  Estimation of a Panel Data Model with Parametric Temporal Variation in Individual Effects , 2004 .

[17]  G. Battese,et al.  Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India , 1992 .

[18]  A. Alvarez,et al.  Technical efficiency and farm size: a conditional analysis , 2004 .

[19]  Léopold Simar,et al.  Pitfalls of Normal-Gamma Stochastic Frontier Models , 1997 .

[20]  S. Caudill,et al.  Biases in frontier estimation due to heteroscedasticity , 1993 .

[21]  Hung-Jen Wang,et al.  Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model , 2002 .

[22]  S. Caudill,et al.  Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity , 1995 .

[23]  Lung-fei Lee,et al.  The measurement and sources of technical inefficiency in the Indonesian weaving industry , 1981 .

[24]  William H. Greene,et al.  Reconsidering heterogeneity in panel data estimators of the stochastic frontier model , 2005 .

[25]  C. Lovell,et al.  On the estimation of technical inefficiency in the stochastic frontier production function model , 1982 .

[26]  P. Schmidt,et al.  Confidence statements for efficiency estimates from stochastic frontier models , 1996 .

[27]  W. Greene On the estimation of a flexible frontier production model , 1980 .

[28]  P. Schmidt,et al.  Production Frontiers and Panel Data , 1984 .

[29]  G. Battese,et al.  Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data , 1988 .

[30]  T. Lancaster The incidental parameter problem since 1948 , 2000 .

[31]  S. Kumbhakar Production frontiers, panel data, and time-varying technical inefficiency , 1990 .

[32]  W. Greene,et al.  Efficiency Measurement in Network Industries: Application to the Swiss Railway Companies , 2004 .

[33]  C. Lovell,et al.  Stochastic Frontier Analysis: Frontmatter , 2000 .

[34]  R. Stevenson Likelihood functions for generalized stochastic frontier estimation , 1980 .

[35]  S. Kumbhakar,et al.  A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms , 1991 .

[36]  K. Hadri Estimation of a Doubly Heteroscedastic Stochastic Frontier Cost Function , 1999 .

[37]  Harold O. Fried,et al.  The measurement of productive efficiency : techniques and applications , 1993 .