Effects of oxygen enrichment on laminar burning velocities and Markstein lengths of CH4/O2/N2 flames at elevated pressures

[1]  Zuo-hua Huang,et al.  Laminar Flame Speeds and Kinetic Modeling of n-Pentanol and Its Isomers , 2015 .

[2]  A. Lipatnikov,et al.  Experimental assessment of various methods of determination of laminar flame speed in experiments with expanding spherical flames with positive Markstein lengths , 2015 .

[3]  Zheng Chen On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure , 2015 .

[4]  A. Tomboulides,et al.  Consistent definitions of “Flame Displacement Speed” and “Markstein Length” for premixed flame propagation , 2015 .

[5]  Y. Ju,et al.  Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames , 2014 .

[6]  Yang Zhang,et al.  Laminar flame speed studies of lean premixed H2/CO/air flames , 2014 .

[7]  Jinhua Wang,et al.  Thermal and Chemical Effects of Water Addition on Laminar Burning Velocity of Syngas , 2014 .

[8]  Meng Zhang,et al.  Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-fuel Mixtures Highly Diluted with CO2 , 2013 .

[9]  Zuo-hua Huang,et al.  Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol-air mixtures , 2013 .

[10]  H. Curran,et al.  A Hierarchical and Comparative Kinetic Modeling Study of C1 − C2 Hydrocarbon and Oxygenated Fuels , 2013 .

[11]  F. Halter,et al.  On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures , 2013 .

[12]  C. Law,et al.  Premixed flame propagation in a confining vessel with weak pressure rise , 2011, Journal of Fluid Mechanics.

[13]  C. Mounaïm-Rousselle,et al.  Experimental estimate of the laminar burning velocity of iso-octane in oxygen-enriched and CO2-diluted air , 2011 .

[14]  Thierry Schuller,et al.  Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames , 2011 .

[15]  Zheng Chen,et al.  On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames , 2011 .

[16]  Zuo-hua Huang,et al.  Laminar Burning Velocities and Markstein Lengths of 2,5-Dimethylfuran-Air Premixed Flames at Elevated Temperatures , 2010 .

[17]  Zuohua Huang,et al.  Laminar burning velocities and flame instabilities of butanol isomers–air mixtures , 2010 .

[18]  Jaap de Vries,et al.  Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures , 2010 .

[19]  F. Halter,et al.  Nonlinear effects of stretch on the flame front propagation , 2010 .

[20]  F. Halter,et al.  Measurement of laminar burning speeds and Markstein lengths using a novel methodology , 2009 .

[21]  C. Law,et al.  Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames , 2009 .

[22]  Jianjun Zheng,et al.  Numerical study on laminar burning velocity and NO formation of premixed methane-hydrogen-air flames , 2009 .

[23]  M. P. Burke,et al.  Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames , 2009 .

[24]  Zuo-hua Huang,et al.  Measurements of laminar burning velocities and Markstein lengths for methanol-air-nitrogen mixtures at elevated pressures and temperatures , 2008 .

[25]  Ji-woong Han,et al.  Study on the Improvement of Chemical Reaction Mechanism of Methane Based on the Laminar Burning Velocities in OEC , 2007 .

[26]  C. Law,et al.  On transition to cellularity in expanding spherical flames , 2007, Journal of Fluid Mechanics.

[27]  Y. Ju,et al.  Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame , 2007 .

[28]  F. Halter,et al.  Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures , 2005 .

[29]  A. Gupta,et al.  High Temperature Air Combustion: From Energy Conservation to Pollution Reduction , 2002 .

[30]  M. Matalon,et al.  The dependence of the Markstein length on stoichiometry , 2001 .

[31]  C. Sung,et al.  Structure, aerodynamics, and geometry of premixed flamelets , 2000 .

[32]  Charles Baukal,et al.  Oxygen-Enhanced Combustion , 1998 .

[33]  Robert J. Kee,et al.  PREMIX :A F ORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames , 1998 .

[34]  P. Gaskell,et al.  Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study , 1996 .

[35]  Richard A. Yetter,et al.  A Comprehensive Reaction Mechanism For Carbon Monoxide/Hydrogen/Oxygen Kinetics , 1991 .

[36]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[37]  P. Ronney,et al.  A theoretical study of propagation and extinction of nonsteady spherical flame fronts , 1989 .

[38]  L. Landau,et al.  On the Theory of Slow Combustion , 1988 .

[39]  Robert J. Moffat,et al.  Describing the Uncertainties in Experimental Results , 1988 .

[40]  G. Sivashinsky,et al.  On Effects Due To Thermal Expansion and Lewis Number in Spherical Flame Propagation , 1983 .