A novel color-context descriptor and its applications

This paper presents a new descriptor for object categorization and pedestrian identification applications. One of the main drawbacks of shape-context descriptor is its vulnerability and distinctness to color images. We propose a spherical descriptor that simultaneously adopts the spatial and color information as a discriminative representation. Based on the descriptor, this paper also contributes a bagof- features framework to pedestrian identification for video surveillance. In contrast to the previous works, the proposed scheme does not require background subtraction stage. Thus the potential problems, such as the susceptibility to shadows and highlights from the background subtraction procedure, are avoided. Experiments validate the discriminant power of the proposed descriptor in object categorization on COIL- 100 database and pedestrian identification in surveillance videos.

[1]  Jitendra Malik,et al.  Geometric blur for template matching , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[3]  Jiebo Luo,et al.  Color object detection using spatial-color joint probability functions , 2004, IEEE Transactions on Image Processing.

[4]  Siwei Lyu,et al.  Mercer kernels for object recognition with local features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  Andrew Zisserman,et al.  Viewpoint invariant texture matching and wide baseline stereo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[6]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[7]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Graham D. Finlayson,et al.  Log-opponent chromaticity coding of colour space , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[9]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Trans. Syst. Man Cybern..

[10]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[11]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  John Krumm,et al.  Object recognition with color cooccurrence histograms , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[13]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Gustavo Carneiro,et al.  Phase-Based Local Features , 2002, ECCV.

[15]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[17]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..