Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease.

Haploinsufficiency of transcriptional regulators causes human congenital heart disease (CHD); however, the underlying CHD gene regulatory network (GRN) imbalances are unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor, TBX5, in individual cells during cardiomyocyte differentiation from human induced pluripotent stem cells (iPSCs). We discovered highly sensitive dysregulation of TBX5-dependent pathways-including lineage decisions and genes associated with heart development, cardiomyocyte function, and CHD genetics-in discrete subpopulations of cardiomyocytes. Spatial transcriptomic mapping revealed chamber-restricted expression for many TBX5-sensitive transcripts. GRN analysis indicated that cardiac network stability, including vulnerable CHD-linked nodes, is sensitive to TBX5 dosage. A GRN-predicted genetic interaction between Tbx5 and Mef2c, manifesting as ventricular septation defects, was validated in mice. These results demonstrate exquisite and diverse sensitivity to TBX5 dosage in heterogeneous subsets of iPSC-derived cardiomyocytes and predicts candidate GRNs for human CHDs, with implications for quantitative transcriptional regulation in disease.

[1]  Timothy J. Nelson,et al.  Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. , 2020, Cell stem cell.

[2]  A. Trafford,et al.  The Control of Diastolic Calcium in the Heart , 2020, Circulation research.

[3]  Michaela Asp A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Asp and Giacomello et al. , 2019 .

[4]  Christopher R. Weber,et al.  Atrial fibrillation risk loci interact to modulate Ca2+-dependent atrial rhythm homeostasis. , 2019, The Journal of clinical investigation.

[5]  Guocheng Yuan,et al.  A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers , 2019, Nature Communications.

[6]  G. Hon,et al.  Rational Reprogramming of Cellular States by Combinatorial Perturbation. , 2019, Cell reports.

[7]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[8]  D. Srivastava,et al.  Oligogenic inheritance of a human heart disease involving a genetic modifier , 2019, Science.

[9]  D. Joy,et al.  Phenotypic Variation Between Stromal Cells Differentially Impacts Engineered Cardiac Tissue Function. , 2019, Tissue engineering. Part A.

[10]  Francisco J. Alvarado,et al.  A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice , 2019, eLife.

[11]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[12]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[13]  Ryan L. Collins,et al.  Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes , 2019, bioRxiv.

[14]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[15]  Robert H. Anderson,et al.  Remodeling of the Embryonic Interventricular Communication in Regard to the Description and Classification of Ventricular Septal Defects , 2018, Anatomical record.

[16]  G. Hon,et al.  Rational reprogramming of cellular states by combinatorial perturbation , 2018, bioRxiv.

[17]  Kashish Chetal,et al.  Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis , 2018, Nature Communications.

[18]  H. Heyn,et al.  Single-cell transcriptomics unveils gene regulatory network plasticity , 2018, Genome Biology.

[19]  Zev J. Gartner,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[20]  A. Regev,et al.  Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis , 2018, Science.

[21]  Mauro W. Costa,et al.  NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network , 2018, Nature Communications.

[22]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[23]  Yufeng Shen,et al.  Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands , 2017, Nature Genetics.

[24]  Giovanni Iacono,et al.  bigSCale: an analytical framework for big-scale single-cell data , 2017, bioRxiv.

[25]  Robyn M. Kaake,et al.  A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. , 2017, JCI insight.

[26]  L. Mirny,et al.  Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization , 2017, Cell.

[27]  A. Hendel,et al.  A Comprehensive TALEN-Based Knockout Library for Generating Human-Induced Pluripotent Stem Cell–Based Models for Cardiovascular Diseases , 2017, Circulation research.

[28]  M. Brueckner,et al.  Genetics and Genomics of Congenital Heart Disease. , 2017, Circulation research.

[29]  M. Burch,et al.  Assessment of Diastolic Function in Congenital Heart Disease , 2017, Front. Cardiovasc. Med..

[30]  Beth L. Pruitt,et al.  Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis , 2016, Cell.

[31]  Bin Zhou,et al.  Transcriptomic Profiling Maps Anatomically Patterned Subpopulations among Single Embryonic Cardiac Cells. , 2016, Developmental cell.

[32]  J. Seidman,et al.  Single-Cell Resolution of Temporal Gene Expression during Heart Development. , 2016, Developmental cell.

[33]  Brian J. Stevenson,et al.  TECRL, a new life‐threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT , 2016, EMBO molecular medicine.

[34]  Christopher R. Weber,et al.  Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm , 2016, Science Translational Medicine.

[35]  Tomas W. Fitzgerald,et al.  Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing , 2016, Nature Genetics.

[36]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[37]  Nevan J Krogan,et al.  CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. , 2016, Cell stem cell.

[38]  M. Hurles,et al.  De Novo and Rare Variants at Multiple Loci Support the Oligogenic Origins of Atrioventricular Septal Heart Defects , 2016, PLoS genetics.

[39]  Linzhao Cheng,et al.  Genome Editing in Human Pluripotent Stem Cells. , 2016, Cold Spring Harbor protocols.

[40]  Md. Abul Hassan Samee,et al.  Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis , 2016, Cell.

[41]  F. Conlon,et al.  The Cardiac TBX5 Interactome Reveals a Chromatin Remodeling Network Essential for Cardiac Septation. , 2016, Developmental cell.

[42]  Stephan J Sanders,et al.  De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies , 2015, Science.

[43]  G. Church,et al.  Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells. , 2015, Current protocols in stem cell biology.

[44]  田原 康玄,et al.  生活習慣病とgenome-wide association study , 2015 .

[45]  K. Pollard,et al.  Human Disease Modeling Reveals Integrated Transcriptional and Epigenetic Mechanisms of NOTCH1 Haploinsufficiency , 2015, Cell.

[46]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[47]  Joshua D. Wythe,et al.  Early patterning and specification of cardiac progenitors in gastrulating mesoderm , 2014, eLife.

[48]  W. Pu,et al.  Insights into the genetic structure of congenital heart disease from human and murine studies on monogenic disorders. , 2014, Cold Spring Harbor perspectives in medicine.

[49]  Axel Visel,et al.  Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease , 2014, Nature Communications.

[50]  J. Belmont,et al.  Genetic basis of congenital cardiovascular malformations. , 2014, European journal of medical genetics.

[51]  Robert H. Anderson,et al.  The Development of Septation in the Four‐Chambered Heart , 2014, Anatomical record.

[52]  Kevin E. Healy,et al.  Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia , 2014, Stem cell reports.

[53]  B. Conklin,et al.  Isolation of single-base genome-edited human iPS cells without antibiotic selection , 2014, Nature Methods.

[54]  Hongbing Shen,et al.  A genome-wide association study identifies two risk loci for congenital heart malformations in Han Chinese populations , 2013, Nature Genetics.

[55]  Murim Choi,et al.  De novo mutations in histone modifying genes in congenital heart disease , 2013, Nature.

[56]  S. Heath,et al.  Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16 , 2013, Nature Genetics.

[57]  E. Chen,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[58]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[59]  S. Heath,et al.  Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot , 2013, Human molecular genetics.

[60]  M. Marazita,et al.  Genome-wide Association Studies , 2012, Journal of dental research.

[61]  K. Lunetta,et al.  Meta-analysis identifies six new susceptibility loci for atrial fibrillation , 2012, Nature Genetics.

[62]  Xiaoxia Qi,et al.  Heart repair by reprogramming non-myocytes with cardiac transcription factors , 2012, Nature.

[63]  A. Moorman,et al.  Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation , 2011, Cellular and Molecular Life Sciences.

[64]  Li Qian,et al.  In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes , 2011, Nature.

[65]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[66]  Kathleen F. Kerr,et al.  Genome-Wide Association Studies of the PR Interval in African Americans , 2011, PLoS genetics.

[67]  V. Vedantham,et al.  Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors , 2010, Cell.

[68]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[69]  Christian Gieger,et al.  Genome-wide association study of PR interval , 2010, Nature Genetics.

[70]  Jehyuk Lee,et al.  A Robust Approach to Identifying Tissue-Specific Gene Expression Regulatory Variants Using Personalized Human Induced Pluripotent Stem Cells , 2009, PLoS genetics.

[71]  D. Srivastava,et al.  Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. , 2009, Developmental biology.

[72]  E. A. Packham,et al.  Physical Interaction between TBX5 and MEF2C Is Required for Early Heart Development , 2009, Molecular and Cellular Biology.

[73]  C. Basson,et al.  Atrial Fibrillation and Other Clinical Manifestations of Altered TBX5 Dosage in Typical Holt-Oram Syndrome. , 2008, Circulation research.

[74]  B. Bruneau,et al.  Tbx5-dependent pathway regulating diastolic function in congenital heart disease , 2008, Proceedings of the National Academy of Sciences.

[75]  E. Creemers,et al.  Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development , 2006, Development.

[76]  Kazuko Koshiba-Takeuchi,et al.  Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. , 2006, Developmental biology.

[77]  F. Foster,et al.  Abnormal cardiac inflow patterns during postnatal development in a mouse model of Holt-Oram syndrome. , 2005, American journal of physiology. Heart and circulatory physiology.

[78]  J. Strouboulis,et al.  A generic tool for biotinylation of tagged proteins in transgenic mice , 2005, Transgenic Research.

[79]  John McAnally,et al.  BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart , 2005, Development.

[80]  M. Quiñones Assessment of diastolic function. , 2005, Progress in cardiovascular diseases.

[81]  B. Bruneau,et al.  TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed , 2004, Current opinion in cardiology.

[82]  A. Moorman,et al.  Cardiac chamber formation: development, genes, and evolution. , 2003, Physiological reviews.

[83]  Jonathan C. Cohen,et al.  GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5 , 2003, Nature.

[84]  M. Bamshad,et al.  Expressivity of Holt-Oram syndrome is not predicted by TBX5 genotype. , 2003, American journal of human genetics.

[85]  J. Hoffman,et al.  The incidence of congenital heart disease. , 2002, Journal of the American College of Cardiology.

[86]  Michael Levine,et al.  Dorsal gradient networks in the Drosophila embryo. , 2002, Developmental biology.

[87]  J. Schmitt,et al.  A Murine Model of Holt-Oram Syndrome Defines Roles of the T-Box Transcription Factor Tbx5 in Cardiogenesis and Disease , 2001, Cell.

[88]  Ryozo Nagai,et al.  Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation , 2001, Nature Genetics.

[89]  S. Izumo,et al.  The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. , 1999, Development.

[90]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[91]  C. Bucana,et al.  Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. , 1997, Science.

[92]  M. Pierpont,et al.  Variation in severity of cardiac disease in Holt-Oram syndrome. , 1996, American journal of medical genetics.

[93]  J. Hoffman,et al.  Incidence of congenital heart disease: II. Prenatal incidence , 1995, Pediatric Cardiology.

[94]  Ruili Li,et al.  Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. , 1995, Genes & development.

[95]  J. Hoffman,et al.  Incidence of congenital heart disease: I. Postnatal incidence , 1995, Pediatric Cardiology.

[96]  S. Solomon,et al.  The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome) , 1994, The New England journal of medicine.

[97]  J. Wishart Probable Error , 1932, The Mathematical Gazette.

[98]  Yigang,et al.  Genome Editing in Human Pluripotent Stem Cells: A Multidisciplinary Approach to Dissecting Cellular Mechanism of Cardiomyopathy , 2016 .

[99]  Derek T. Peters,et al.  Genome editing in human pluripotent stem cells , 2014 .

[100]  B. Black,et al.  Transcription factor pathways and congenital heart disease. , 2012, Current topics in developmental biology.

[101]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[102]  R. Kucherlapati,et al.  Mutations in human cause limb and cardiac malformation in Holt-Oram syndrome , 1997, Nature Genetics.

[103]  J. Seidman,et al.  Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. , 1997, Nature genetics.

[104]  David I. Wilson,et al.  Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family , 1997, Nature Genetics.

[105]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[106]  D. G. Chen,et al.  Holt-Oram syndrome. , 1986, Chinese medical journal.

[107]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[108]  R. Fisher 014: On the "Probable Error" of a Coefficient of Correlation Deduced from a Small Sample. , 1921 .

[109]  Edinburgh Research Explorer Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders , 2022 .