Attractors of iterated function systems and Markov operators
暂无分享,去创建一个
[1] R. Fortet,et al. Convergence de la répartition empirique vers la répartition théorique , 1953 .
[2] T. Szarek. Invariant measures for nonexpansive Markov operators on Polish spaces , 2003 .
[3] M. Mackey,et al. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .
[4] D. Vere-Jones. Markov Chains , 1972, Nature.
[5] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[6] E. Michael. Continuous Selections. I , 1956 .
[7] J. F. C. Kingman,et al. The ergodic theory of Markov processes , 1971, The Mathematical Gazette.
[8] J. Elton. An ergodic theorem for iterated maps , 1987, Ergodic Theory and Dynamical Systems.
[9] Erhan Çinlar,et al. Introduction to stochastic processes , 1974 .
[10] Tomasz Szarek. Invariant measures for iterated function systems , 2000 .
[11] Tomasz Szarek. Invariant measures for Markov operators with application to function systems , 2003 .
[12] P. Ney. GENERAL IRREDUCIBLE MARKOV CHAINS AND NON‐NEGATIVE OPERATORS (Cambridge Tracts in Mathematics, 83) , 1986 .
[13] M. Barnsley,et al. Invariant measures for Markov processes arising from iterated function systems with place-dependent , 1988 .
[14] Tomasz Szarek,et al. The stability of Markov operators on Polish spaces , 2000 .
[15] P. Rousseeuw,et al. Wiley Series in Probability and Mathematical Statistics , 2005 .