Productivity and biomass of Thalassia testudinum as related to water column nutrient availability and epiphyte levels: field observations and experimental studies

[1]  F. Flores-Verdugo,et al.  Phytoplankton production and seasonal biomass variation of seagrass,Ruppia maritima L., in a tropical Mexican lagoon with an ephemeral inlet , 1988 .

[2]  K. Sand‐Jensen Effect of epiphytes on eelgrass photosynthesis , 1977 .

[3]  D. Tomasko,et al.  Depth Distribution of Thalassia testudinum in two Meadows on the West Coast of Florida; a Difference in Effect of Light Availability , 1988 .

[4]  A. Mccomb,et al.  The loss of seagrass in cockburn sound, Western Australia. III. The effect of epiphytes on productivity of Posidonia australis Hook. F. , 1986 .

[5]  W. Boynton,et al.  The decline of submerged vascular plants in upper Chesapeake Bay: summary of results concerning possible causes [Aquatic vegetation, factors as runoff of agricultural herbicides, erosional inputs of sediments, nutrient enrichment and associated algal growth] , 1983 .

[6]  B. Lapointe,et al.  A comparison of nutrient-limited productivity in macroalgae from a Caribbean barrier reef and from a mangrove ecosystem , 1987 .

[7]  Evolution, en cinq années, des herbiers à Posidonia oceanica et du macrobenthos circalittoral action conjuguée des activités humaines et des modifications climatiques , 1986 .

[8]  B. Lapointe,et al.  Nutrient couplings between on-site sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys , 1990 .

[9]  B. Lapointe Macroalgal production and nutrient relations in oligotrophic areas of Florida Bay , 1989 .

[10]  R. Twilley Nutrient enrichment of estuarine submersed vascular plant communities. 1. Algal growth and effects on production of plants and associated communities. , 1985 .

[11]  D. Tomasko,et al.  Evidence for Physiological Integration Between Shaded and Unshaded Short Shoots of Thalassia testudinum , 1989 .

[12]  J. Borum Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary , 1985 .

[13]  William J. Kimmerer,et al.  Kaneohe Bay Sewage Diversion Experiment: Perspectives on Ecosystem Responses to Nutritional Perturbation , 1981 .

[14]  J. Fuhrman,et al.  Rapid ammonium cycling and concentration‐dependent partitioning of ammonium and phosphate: Implications for carbon transfer in planktonic communities , 1990 .

[15]  G. Powell,et al.  Experimental evidence for nutrient limitation of seagrass growth in a tropical estuary with restricted circulation , 1989 .

[16]  J. P. Riley,et al.  A modified single solution method for the determination of phosphate in natural waters , 1962 .

[17]  A. Larkum Ecology of Botany Bay. I. Growth of Posidonia australis (Brown) Hook. f. in Botany Bay and other bays of the Sydney basin , 1976 .

[18]  B. Lapointe Phosphorus- and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys: an experimental field study , 1987 .

[19]  K. Dunton Production ecology of Ruppia maritima L. s.l. and Halodule wrightii Aschers, in two subtropical estuaries , 1990 .

[20]  K. Moore,et al.  Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: An historical perspective , 1984 .

[21]  C. Suttle,et al.  Ammonium and phosphate uptake kinetics of size-fractionated plankton from an oligotrophic freshwater lake , 1988 .

[22]  G. Slawyk,et al.  Comparison of two automated ammonium methods in a region of coastal upwelling , 1972 .

[23]  D. Tomasko,et al.  Influences of season and water depth on the clonal biology of the seagrassThalassia testudinum , 1990 .

[24]  A. Mccomb,et al.  The loss of seagrasses in Cockburn Sound, Western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development , 1984 .