Performances of chaos-coded modulation concatenated with Alamouti’s space–time block code

Recently, some works have shown that it was possible to obtain quite good bit error rate performances over an additive white Gaussian noise channels with chaotic systems. In this research field, this paper proposes new insights for the chaos-coded modulation (CCM) schemes originally proposed by Kozic et al. (2003; IEEE Trans Circuits Syst Regul Pap 53:2048–2059, 2006). A detailed study of the distance spectrum of such schemes is proposed and an approximation of its distribution by means of Gaussian or Rayleigh mixtures is given. Furthermore, using these approximate distributions, a complete study of the performances of these CCM schemes when they are concatenated with a space–time block code is proposed. Accurate bounds are obtained even in the case of time-selective channels.

[1]  Miguel A. F. Sanjuán,et al.  Chaos-Coded Modulations Over Rician and Rayleigh Flat Fading Channels , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[3]  S. S. Pietrobon,et al.  Chaotic turbo codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[4]  Martin Hasler,et al.  Coded modulations based on controlled 1-D and 2-D piecewise linear chaotic maps , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[5]  Pooi Yuen Kam,et al.  Bit Error Performance of Orthogonal Space-Time Block Codes over Time-Selective Channel , 2007, 2007 IEEE International Conference on Communications.

[6]  Robert W. Heath,et al.  Space-time block codes versus space-time trellis codes , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[7]  Gregory W. Wornell,et al.  Analog error-correcting codes based on chaotic dynamical systems , 1998, IEEE Trans. Commun..

[8]  Jian-Ching Guey Concatenated coding for transmit diversity systems , 1999, Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324).

[9]  Miguel A. F. Sanjuán,et al.  ITERATIVELLY DECODING CHAOS ENCODED BINARY SIGNALS , 2005, Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005..

[10]  D. R. Frey,et al.  Chaotic digital encoding: an approach to secure communication , 1993 .

[11]  Miguel A. F. Sanjuán,et al.  Channel coding in communications using chaos , 2002 .

[12]  Guosen Yue,et al.  Performance analysis and design optimization of LDPC-coded MIMO OFDM systems , 2004, IEEE Trans. Signal Process..

[13]  Martin Hasler,et al.  Controlled One- and Multidimensional Modulations Using Chaotic Maps , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  W. Schwarz,et al.  Chaos communications-principles, schemes, and system analysis , 2002, Proc. IEEE.

[15]  Tomaso Erseghe,et al.  Pseudo-chaotic encoding applied to ultra-wide-band impulse radio , 2002, Proceedings IEEE 56th Vehicular Technology Conference.

[16]  Miguel A F Sanjuán,et al.  Evaluation of channel coding and decoding algorithms using discrete chaotic maps. , 2006, Chaos.

[17]  S. Kozic,et al.  How to repair CSK using small perturbation control - Case study and performance analysis , 2003 .

[18]  Slobodan Kozic,et al.  Coded modulation based on higher dimensional chaotic maps , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[19]  Jaejin Lee,et al.  Secure communication using a chaos system in a mobile channel , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[20]  F.J. Escribano,et al.  Parallel concatenated chaos coded modulations , 2007, 2007 15th International Conference on Software, Telecommunications and Computer Networks.

[21]  Wen-tao Song,et al.  Chaotic turbo codes in secure communication , 2001, EUROCON'2001. International Conference on Trends in Communications. Technical Program, Proceedings (Cat. No.01EX439).

[22]  Gianluca Mazzini,et al.  Performance of chaos-based asynchronous DS-CDMA with different pulse shapes , 2004, IEEE Communications Letters.

[23]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[24]  Alan Layec Développement de modèles de CAO pour la simulation système des systèmes de communication : application aux communications chaotiques , 2006 .

[25]  Gianluca Mazzini,et al.  Capacity of chaos-based asynchronous DS-CDMA systems with exponentially vanishing autocorrelations , 2002 .

[26]  Zahir M. Hussain,et al.  A new approach in chaos shift keying for secure communication , 2005, Third International Conference on Information Technology and Applications (ICITA'05).

[27]  S. Kozic Channel coding and modulation based on chaotic systems , 2006 .

[28]  Riccardo Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results , 1997 .

[29]  R. Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. Part II. Some theoretical performance bounds , 1998 .

[30]  Ying-Cheng Lai,et al.  CODING, CHANNEL CAPACITY, AND NOISE RESISTANCE IN COMMUNICATING WITH CHAOS , 1997 .

[31]  Douglas B. Williams,et al.  A noise reduction method for chaotic signals , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[32]  J. Schweizer The performance of chaos shift keying: synchronization versus symbolic backtracking , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).