Glutamine-induced filamentous cells of Pseudomonas mediterranea CFBP-5447T as producers of PHAs

[1]  M. Nicolò,et al.  The role of glutamine in Pseudomonas mediterranea in biotechnological processes. , 2017, New biotechnology.

[2]  Guoqiang Chen,et al.  Morphology engineering of bacteria for bio-production. , 2016, Biotechnology advances.

[3]  Régis Hallez,et al.  Metabolic control of cell division in α-proteobacteria by a NAD-dependent glutamate dehydrogenase , 2016, Communicative & integrative biology.

[4]  Erik Spillum,et al.  Automated image analysis for quantification of filamentous bacteria , 2015, BMC Microbiology.

[5]  S. Taguchi,et al.  MtgA Deletion-Triggered Cell Enlargement of Escherichia coli for Enhanced Intracellular Polyester Accumulation , 2015, PloS one.

[6]  Guoqiang Chen,et al.  Engineering the bacterial shapes for enhanced inclusion bodies accumulation. , 2015, Metabolic engineering.

[7]  V. Venturi,et al.  Draft Genome Sequence of Pseudomonas mediterranea Strain CFBP 5447T, a Producer of Filmable Medium-Chain-Length Polyhydroxyalkanoates , 2014, Genome Announcements.

[8]  Nicola,et al.  Integrated Microbial Process for Bioconversion of Crude Glycerol from Biodiesel Into Biosurfactants and Phas , 2014 .

[9]  Guoqiang Chen,et al.  Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. , 2014, Metabolic engineering.

[10]  A. Rescifina,et al.  Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. , 2014, International journal of biological macromolecules.

[11]  F. Rojo,et al.  Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression. , 2013, Environmental microbiology.

[12]  A. Aertsen,et al.  Differential proteomics and physiology of Pseudomonas putida KT2440 under filament-inducing conditions , 2012, BMC Microbiology.

[13]  A. Imberty,et al.  AFM investigation of Pseudomonas aeruginosa lectin LecA (PA-IL) filaments induced by multivalent glycoclusters. , 2011, Chemical communications.

[14]  S. Yoon,et al.  Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration , 2011, PloS one.

[15]  M. A. Prieto,et al.  Nucleoid‐associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442 , 2011, Molecular microbiology.

[16]  Scott J. Hultgren,et al.  Morphological plasticity as a bacterial survival strategy , 2008, Nature Reviews Microbiology.

[17]  F. Rojo,et al.  Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases. , 2006, Environmental microbiology.

[18]  B. Rehm,et al.  In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases. , 2005, FEMS microbiology letters.

[19]  Stanley N Cohen,et al.  SOS Response Induction by ß-Lactams and Bacterial Defense Against Antibiotic Lethality , 2004, Science.

[20]  J. Bailey,et al.  Fluorometric measurement of poly-β hydroxybutyrate in Alcaligenes eutrophus by flow cytometry and spectrofluorometry , 2004, Applied Microbiology and Biotechnology.

[21]  F. Rojo,et al.  Expression of the Pseudomonas putida OCT Plasmid Alkane Degradation Pathway Is Modulated by Two Different Global Control Signals: Evidence from Continuous Cultures , 2003, Journal of bacteriology.

[22]  A. Sonawane,et al.  Utilization of acidic amino acids and their amides by pseudomonads: role of periplasmic glutaminase-asparaginase , 2003, Archives of Microbiology.

[23]  H. Hansma,et al.  Elongation Correlates with Nutrient Deprivation in Pseudomonas aeruginosa Unsaturated Biofilms , 2002, Microbial Ecology.

[24]  H. Lappin-Scott,et al.  Survival and Filamentation of Salmonella entericaSerovar Enteritidis PT4 and Salmonella enterica Serovar Typhimurium DT104 at Low Water Activity , 2000, Applied and Environmental Microbiology.

[25]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[26]  K. Röhm,et al.  Cloning, sequence analysis, and expression of ansB from Pseudomonas fluorescens, encoding periplasmic glutaminase/asparaginase. , 1999, FEMS microbiology letters.

[27]  A. Steinbüchel,et al.  A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds , 1999, Archives of Microbiology.

[28]  A. Steinbüchel,et al.  Diversity of bacterial polyhydroxyalkanoic acids , 1995 .

[29]  C. A. Woolfolk,et al.  Formation of Filaments by Pseudomonas putida , 1985, Applied and environmental microbiology.

[30]  M. K. Shaw Formation of Filaments and Synthesis of Macromolecules at Temperatures Below the Minimum for Growth of Escherichia coli , 1968, Journal of bacteriology.