Waveguide-based Room Acoustics through Graphics Hardware

The modelling of room acoustics remains a difficult and computationally expensive task. Two main techniques exist, one focusing on the real physical wave-oriented sound propagation, while the other approximates sound waves using rays and ray-tracing techniques. One of the most popular wave-based technique are waveguide meshes, which simulate the propagation of sound using time domain difference models. In this paper we discuss a realtime implementation of the waveguide technique using fragment shaders and computer graphics hardware. Graphics hardware is well suited for parallel implementations and thus able to speedup the computation. Additionally, we discuss optimal sampling on hexagonal grids to further increase the computational efficiency. We compare both implementations and discuss the results achieved.

[1]  A. G. Jackson,et al.  Handbook of Crystallography , 1991 .

[2]  S. Bilbao Wave and Scattering Methods for Numerical Simulation , 2004 .

[3]  Yuvi Kahana,et al.  Numerical Modelling of the Transfer Functions of a Dummy-Head and of the External Ear , 1999 .

[4]  Sean Whalen Audio and the Graphics Processing Unit , 2005 .

[5]  Maic Masuch,et al.  Leaving the screen New perspectives in audio-only gaming , 2005 .

[6]  Tapio Lokki,et al.  Digital Waveguide Mesh for Room Acoustic Modeling , 2001 .

[7]  Davide Rocchesso,et al.  Signal-theoretic characterization of waveguide mesh geometries for models of two-dimensional wave propagation in elastic media , 2001, IEEE Trans. Speech Audio Process..

[8]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[9]  Damian T. Murphy,et al.  ROOMWEAVER: A DIGITAL WAVEGUIDE MESH BASED ROOM ACOUSTICS RESEARCH TOOL , 2004 .

[10]  Dawid Pajak General-Purpose Computation Using Graphics Hardware for Fast HDR Image Processing , 2007 .

[11]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[12]  Randi J. Rost OpenGL shading language , 2004 .

[13]  David M. Howard,et al.  On the computational efficiency of different waveguide mesh topologies for room acoustic simulation , 2005, IEEE Transactions on Speech and Audio Processing.

[14]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[15]  Marinus M. Boone Acoustic rendering with wave field synthesis , 2001 .

[16]  Krzysztof Marasek,et al.  Computation of Room Acoustics using Programmable Video Hardware , 2004, ICCVG.

[17]  Eduard Gröller,et al.  Optimal regular volume sampling , 2001, Proceedings Visualization, 2001. VIS '01..

[18]  S. Van Duyne,et al.  The 2-D digital waveguide mesh , 1993, Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[19]  N.J.A. Sloane The Sphere-Packing Problem , 1998 .

[20]  Vesa Välimäki,et al.  Reducing the dispersion error in the digital waveguide mesh using interpolation and frequency-warping techniques , 2000, IEEE Trans. Speech Audio Process..

[21]  Julius O. Smith,et al.  The 3D Tetrahedral Digital Waveguide Mesh with Musical Applications , 1996, ICMC.

[22]  Emmanuel Gallo,et al.  Efficient 3D Audio Processing with the GPU , 2004 .

[23]  Tapio Takala,et al.  Waveguide Mesh Method for Low-Frequency Simulation of Room Acoustics , 1995 .

[24]  Julius O. Smith,et al.  Physical Modeling Using Digital Waveguides , 1992 .