Computing Multipersistence by Means of Spectral Systems

In their original setting, both spectral sequences and persistent homology are algebraic topology tools defined from filtrations of objects (e.g. topological spaces or simplicial complexes) indexed over the set \Z of integer numbers. Recently, generalizations of both concepts have been proposed which originate from a different choice of the set of indices of the filtration, producing the new notions of multipersistence and spectral system. In this paper, we show that these notions are related, generalizing results valid in the case of filtrations over \Z. By using this relation and some previous programs for computing spectral systems, we have developed a new module for the Kenzo system computing multipersistence. We also present a new invariant providing information on multifiltrations and applications of our algorithms to spaces of infinite type.

[1]  Michael Kerber,et al.  Persistent Homology – State of the art and challenges , 2016 .

[2]  坂上 貴之 書評 Computational Homology , 2005 .

[3]  Tamal K. Dey,et al.  Computing Bottleneck Distance for 2-D Interval Decomposable Modules , 2018, SoCG.

[4]  Wojciech Chachólski,et al.  Multidimensional Persistence and Noise , 2015, Foundations of Computational Mathematics.

[5]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[6]  Laxmi Parida,et al.  Spectral Sequences, Exact Couples and Persistent Homology of filtrations , 2013, ArXiv.

[7]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[8]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[9]  Julio Rubio,et al.  Constructive Homological Algebra and Applications , 2012, 1208.3816.

[10]  Ana Romero,et al.  Discrete Vector Fields and Fundamental Algebraic Topology , 2010, ArXiv.

[11]  Montek Gill,et al.  Spectral Sequences , 2022, Homology, Cohomology, and Sheaf Cohomology for Algebraic Topology, Algebraic Geometry, and Differential Geometry.

[12]  Benjamin Matschke Successive Spectral Sequences , 2013 .

[13]  Ana Romero,et al.  Effective Computation of Generalized Spectral Sequences , 2018, ISSAC.

[14]  Steve Oudot,et al.  Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.

[15]  Leila De Floriani,et al.  Computing multiparameter persistent homology through a discrete Morse-based approach , 2018, Comput. Geom..

[16]  Ana Romero,et al.  Computing spectral sequences , 2006, J. Symb. Comput..

[17]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[18]  Michael Lesnick,et al.  Interactive Visualization of 2-D Persistence Modules , 2015, ArXiv.

[19]  Afra Zomorodian,et al.  Computing Multidimensional Persistence , 2009, J. Comput. Geom..

[20]  Alice Patania,et al.  P-persistent homology of finite topological spaces , 2015, ArXiv.

[21]  Ezra Miller Data structures for real multiparameter persistence modules , 2017, 1709.08155.

[22]  Jónathan Heras,et al.  Defining and computing persistent Z-homology in the general case , 2014, ArXiv.

[23]  R. Forman Morse Theory for Cell Complexes , 1998 .

[24]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[25]  Francis Sergeraert,et al.  Constructive algebraic topology , 1999, SIGS.

[26]  Herbert Edelsbrunner,et al.  Persistent Homology: Theory and Practice , 2013 .

[27]  M. Ferri,et al.  Betti numbers in multidimensional persistent homology are stable functions , 2013 .

[28]  Francesco Vaccarino,et al.  Combinatorial presentation of multidimensional persistent homology , 2014, ArXiv.

[29]  Heather A. Harrington,et al.  Stratifying Multiparameter Persistent Homology , 2017, SIAM J. Appl. Algebra Geom..

[30]  John McCleary,et al.  User's Guide to Spectral Sequences , 1985 .