Computing Multipersistence by Means of Spectral Systems
暂无分享,去创建一个
[1] Michael Kerber,et al. Persistent Homology – State of the art and challenges , 2016 .
[2] 坂上 貴之. 書評 Computational Homology , 2005 .
[3] Tamal K. Dey,et al. Computing Bottleneck Distance for 2-D Interval Decomposable Modules , 2018, SoCG.
[4] Wojciech Chachólski,et al. Multidimensional Persistence and Noise , 2015, Foundations of Computational Mathematics.
[5] Afra Zomorodian,et al. The Theory of Multidimensional Persistence , 2007, SCG '07.
[6] Laxmi Parida,et al. Spectral Sequences, Exact Couples and Persistent Homology of filtrations , 2013, ArXiv.
[7] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[8] Jon P. May. Simplicial objects in algebraic topology , 1993 .
[9] Julio Rubio,et al. Constructive Homological Algebra and Applications , 2012, 1208.3816.
[10] Ana Romero,et al. Discrete Vector Fields and Fundamental Algebraic Topology , 2010, ArXiv.
[11] Montek Gill,et al. Spectral Sequences , 2022, Homology, Cohomology, and Sheaf Cohomology for Algebraic Topology, Algebraic Geometry, and Differential Geometry.
[12] Benjamin Matschke. Successive Spectral Sequences , 2013 .
[13] Ana Romero,et al. Effective Computation of Generalized Spectral Sequences , 2018, ISSAC.
[14] Steve Oudot,et al. Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.
[15] Leila De Floriani,et al. Computing multiparameter persistent homology through a discrete Morse-based approach , 2018, Comput. Geom..
[16] Ana Romero,et al. Computing spectral sequences , 2006, J. Symb. Comput..
[17] Mason A. Porter,et al. A roadmap for the computation of persistent homology , 2015, EPJ Data Science.
[18] Michael Lesnick,et al. Interactive Visualization of 2-D Persistence Modules , 2015, ArXiv.
[19] Afra Zomorodian,et al. Computing Multidimensional Persistence , 2009, J. Comput. Geom..
[20] Alice Patania,et al. P-persistent homology of finite topological spaces , 2015, ArXiv.
[21] Ezra Miller. Data structures for real multiparameter persistence modules , 2017, 1709.08155.
[22] Jónathan Heras,et al. Defining and computing persistent Z-homology in the general case , 2014, ArXiv.
[23] R. Forman. Morse Theory for Cell Complexes , 1998 .
[24] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[25] Francis Sergeraert,et al. Constructive algebraic topology , 1999, SIGS.
[26] Herbert Edelsbrunner,et al. Persistent Homology: Theory and Practice , 2013 .
[27] M. Ferri,et al. Betti numbers in multidimensional persistent homology are stable functions , 2013 .
[28] Francesco Vaccarino,et al. Combinatorial presentation of multidimensional persistent homology , 2014, ArXiv.
[29] Heather A. Harrington,et al. Stratifying Multiparameter Persistent Homology , 2017, SIAM J. Appl. Algebra Geom..
[30] John McCleary,et al. User's Guide to Spectral Sequences , 1985 .