Multitrait, Random Regression, or Simple Repeatability Model in High‐Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield

HTP platforms used to measure secondary traits across time Longitudinal data of secondary traits evaluated by SR, MT, and RR models, separately BLUPs of secondary traits used in the multivariate pedigree and genomic prediction Grain yield predictive ability was improved by 70%

[1]  K. Sayre,et al.  Canopy temperatures of wheat: Relationship with yield and potential as a technique for early generation selection , 1993 .

[2]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[3]  I Misztal,et al.  Genetic parameters estimated with multitrait and linear spline-random regression models using Gelbvieh early growth data. , 2005, Journal of animal science.

[4]  Qinjun Huang,et al.  Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides , 2014, BMC Genetics.

[5]  L. Xiong,et al.  Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice , 2014, Nature Communications.

[6]  José Crossa,et al.  Genomic Selection in Wheat Breeding using Genotyping‐by‐Sequencing , 2012 .

[7]  Jean-Luc Jannink,et al.  Shrinkage Estimation of the Realized Relationship Matrix , 2012, G3: Genes | Genomes | Genetics.

[8]  M P L Calus,et al.  Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population. , 2013, Animal : an international journal of animal bioscience.

[9]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[10]  Karin Meyer,et al.  Random regressions to model phenotypic variation in monthly weights of Australian beef cows , 2000 .

[11]  Rick L. Lawrence,et al.  Wheat yield estimates using multi-temporal NDVI satellite imagery , 2002 .

[12]  M. Sorrells,et al.  Genomic selection for durable stem rust resistance in wheat , 2011, Euphytica.

[13]  B. Cullis,et al.  mixed models for S language environments ASReml-R reference manual ASReml estimates variance components under a general linear mixed model by residual maximum likelihood (REML) , 2009 .

[14]  R. E. Mason,et al.  Considerations When Deploying Canopy Temperature to Select High Yielding Wheat Breeding Lines under Drought and Heat Stress , 2014 .

[15]  K. Meyer Estimating covariance functions for longitudinal data using a random regression model , 1998, Genetics Selection Evolution.

[16]  Raphael Mrode,et al.  Linear models for the prediction of animal breeding values , 1996 .

[17]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[18]  Jean-Luc Jannink,et al.  Multiple-Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy , 2012, Genetics.

[19]  S. Brotherstone,et al.  Genetic and environmental smoothing of lactation curves with cubic splines. , 1999, Journal of dairy science.

[20]  J. Cañón,et al.  Multi-trait and random regression approaches for addressing the wide range of weaning ages in Asturiana de los Valles beef cattle for genetic parameter estimation. , 2008, Journal of animal science.

[21]  R. Veerkamp,et al.  Genetic parameters for various random regression models to describe the weight data of pigs. , 2002, Journal of animal science.

[22]  Lorena González Pérez,et al.  Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat , 2016, G3: Genes, Genomes, Genetics.

[23]  R. Lôbo,et al.  Random regression analyses using B-spline functions to model growth of Nellore cattle. , 2012, Animal : an international journal of animal bioscience.

[24]  N. Silleos,et al.  The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction , 1993 .

[25]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[26]  Guosheng Su,et al.  Comparison of single-trait and multiple-trait genomic prediction models , 2014, BMC Genetics.

[27]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[28]  W. G. Hill,et al.  Estimation of genetic and phenotypic covariance functions for longitudinal or ‘repeated’ records by restricted maximum likelihood , 1997 .

[29]  M. Naghavi,et al.  Analysis of Quantitative Trait Loci (QTL) for Grain Yield and Agronomic Traits in Wheat (Triticum aestivum L.) Under Normal and Salt-Stress Conditions , 2015, Plant Molecular Biology Reporter.

[30]  S. König,et al.  Random regression test-day model for clinical mastitis: genetic parameters, model comparison, and correlations with indicator traits. , 2014, Journal of dairy science.

[31]  Karin Meyer,et al.  Random regression analyses using B-splines to model growth of Australian Angus cattle , 2005, Genetics Selection Evolution.

[32]  P. S. Lopes,et al.  Genetic evaluation using multi-trait and random regression models in Simmental beef cattle. , 2013, Genetics and molecular research : GMR.

[33]  J. Araus,et al.  Field high-throughput phenotyping: the new crop breeding frontier. , 2014, Trends in plant science.

[34]  Jean-Luc Jannink,et al.  Evaluation of Genomic Prediction Methods for Fusarium Head Blight Resistance in Wheat , 2012 .

[35]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[36]  J. Woolliams,et al.  The application of random regression models in the genetic analysis of monthly egg production in turkeys and a comparison with alternative longitudinal models. , 2007, Poultry science.

[37]  H. Grüneberg,et al.  Introduction to quantitative genetics , 1960 .

[38]  I. Misztal,et al.  Properties of random regression models using linear splines. , 2006, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[39]  Jeffrey B. Endelman,et al.  Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP , 2011 .

[40]  M. See,et al.  Comparison of Genetic Parameter Estimates of Total Sperm Cells of Boars between Random Regression and Multiple Trait Animal Models , 2008 .