Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration.

[1]  J. Donoghue Physical. , 2018, The Western journal of medicine.

[2]  Julian R. Jones,et al.  Ductile silica/methacrylate hybrids for bone regeneration. , 2016, Journal of materials chemistry. B.

[3]  Julian R. Jones,et al.  Tailoring Mechanical Properties of Sol–Gel Hybrids for Bone Regeneration through Polymer Structure , 2016 .

[4]  J. Bideau,et al.  Glycidyl alkoxysilane reactivities towards simple nucleophiles in organic media for improved molecular structure definition in hybrid materials , 2016 .

[5]  C. S. Patrickios,et al.  A dimethacrylate cross-linker cleavable under thermolysis or alkaline hydrolysis conditions: synthesis, polymerization, and degradation. , 2016, Chemical communications.

[6]  Julian R. Jones,et al.  Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. , 2015, Journal of materials chemistry. B.

[7]  Chengtie Wu,et al.  Silicate bioceramic/PMMA composite bone cement with distinctive physicochemical and bioactive properties , 2015 .

[8]  Julian R. Jones,et al.  Poly(γ-glutamic acid)/Silica Hybrids with Calcium Incorporated in the Silica Network by Use of a Calcium Alkoxide Precursor , 2014, Chemistry.

[9]  Wantai Yang,et al.  An arm-first approach to cleavable mikto-arm star polymers by RAFT polymerization. , 2014, Macromolecular rapid communications.

[10]  Julian R. Jones,et al.  Silica–gelatin hybrids for tissue regeneration: inter-relationships between the process variables , 2014, Journal of Sol-Gel Science and Technology.

[11]  S. Armes,et al.  Facile synthesis of thiol-functionalized amphiphilic polylactide–methacrylic diblock copolymers , 2014 .

[12]  Julian R. Jones,et al.  Chemical characterisation and fabrication of chitosan-silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. , 2014, Journal of materials chemistry. B.

[13]  Julian R. Jones,et al.  Epoxide opening versus silica condensation during sol-gel hybrid biomaterial synthesis. , 2013, Chemistry.

[14]  N. Malys,et al.  Partition and turnover of glutathione reductase from Saccharomyces cerevisiae: a proteomic approach. , 2013, Journal of proteome research.

[15]  F. Dehghani,et al.  Molecular interactions in coupled PMMA-bioglass hybrid networks. , 2013, Journal of materials chemistry. B.

[16]  S. Armes,et al.  Thiol-Functionalized Block Copolymer Vesicles. , 2012, ACS macro letters.

[17]  Julian R. Jones,et al.  Bioactive silica–poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds , 2012 .

[18]  S. Armes,et al.  Quantification of Intramolecular Cyclization in Branched Copolymers by 1H NMR Spectroscopy , 2012 .

[19]  Eduardo Saiz,et al.  Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. , 2011, Acta biomaterialia.

[20]  Julian R Jones,et al.  Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. , 2011, Acta biomaterialia.

[21]  Eduardo Saiz,et al.  Bioinspired Strong and Highly Porous Glass Scaffolds , 2011, Advanced functional materials.

[22]  Delbert E. Day,et al.  Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair , 2011, Journal of materials science. Materials in medicine.

[23]  Molly M. Stevens,et al.  Silica‐Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration , 2010 .

[24]  Jean M. J. Fréchet,et al.  Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture , 2010 .

[25]  C. S. Patrickios,et al.  Degradable polymer networks and star polymers based on mixtures of two cleavable dimethacrylate crosslinkers: Synthesis, characterization, and degradation , 2009 .

[26]  S. Armes,et al.  Synthesis of Highly Branched Methacrylic Copolymers: Observation of Near-Ideal Behavior using RAFT Polymerization , 2009 .

[27]  C. S. Patrickios,et al.  Star polymers and polymer networks containing a novel, hydrolyzable diacetal-based dimethacrylate cross-linker: Synthesis, characterization, and hydrolysis kinetics , 2007 .

[28]  Anthony J. Ryan,et al.  Synthesis and Peptide‐Induced Degradation of Biocompatible Fibers Based on Highly Branched Poly(2‐hydroxyethyl methacrylate) , 2006 .

[29]  Julian R Jones,et al.  Optimising bioactive glass scaffolds for bone tissue engineering. , 2006, Biomaterials.

[30]  C. S. Patrickios,et al.  Synthesis and Characterization of Star Polymers and Cross-Linked Star Polymer Model Networks with Cores Based on an Asymmetric, Hydrolyzable Dimethacrylate Cross-Linker , 2006 .

[31]  Kanji Tsuru,et al.  In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. , 2005, Biomaterials.

[32]  M. Lopes,et al.  In Vitro Biodegradability of Chitosan-Organosiloxane Hybrid Membrane , 2005 .

[33]  G. Federici,et al.  Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. , 2001, Clinical chemistry.

[34]  H. Oonishi,et al.  Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic, and hydroxyapatite. , 2000, Journal of biomedical materials research.

[35]  Y. Takakura,et al.  Extravasation of macromolecules. , 1998, Advanced drug delivery reviews.

[36]  A Cabibbo,et al.  Cysteine and glutathione secretion in response to protein disulfide bond formation in the ER. , 1997, Science.

[37]  Bruce M. Novak,et al.  Hybrid nanocomposite materials―between inorganic glasses and organic polymers , 1993 .

[38]  Wei-Hsin Yen,et al.  Thermal stability and hardness of new polyacrylate-SiO2 hybrid sol-gel materials , 1992 .

[39]  J. E. Brown,et al.  Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates) , 1986 .

[40]  Julian R. Jones,et al.  Exploring GPTMS reactivity against simple nucleophiles: chemistry beyond hybrid materials fabrication , 2014 .

[41]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[42]  Kanji Tsuru,et al.  Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. , 2009, Acta biomaterialia.