The Interplay of Curvature and Vortices in Flow on Curved Surfaces

Incompressible fluids on curved surfaces are considered with respect to the interplay between topology, geometry and fluid properties using a surface vorticity-stream function formulation, which is solved using parametric finite elements. Motivated by designed examples for superfluids, we consider the influence of a geometric potential on vortices for fluids with finite viscosity and show numerical examples in which a change in the geometry is used to manipulate the flow field.

[1]  Axel Voigt,et al.  AMDiS: adaptive multidimensional simulations , 2007 .

[2]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[3]  Randall D. Kamien,et al.  The Geometry of Soft Materials: A Primer , 2002 .

[4]  Marino Arroyo,et al.  Relaxation dynamics of fluid membranes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[6]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[7]  Marius Mitrea,et al.  Navier-Stokes equations on Lipschitz domains in Riemannian manifolds , 2001 .

[8]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[9]  Toward a Tetravalent Chemistry of Colloids , 2002, cond-mat/0206552.

[10]  Antonio DeSimone,et al.  Curved fluid membranes behave laterally as effective viscoelastic media , 2013 .

[11]  V. Vitelli,et al.  Anomalous coupling between topological defects and curvature. , 2004, Physical review letters.

[12]  D. Nelson,et al.  Vortices on curved surfaces , 2010 .

[13]  Dieter Bothe,et al.  On the Two-Phase Navier–Stokes Equations with Boussinesq–Scriven Surface Fluid , 2010 .

[14]  L. Scriven,et al.  Dynamics of a fluid interface Equation of motion for Newtonian surface fluids , 1960 .

[15]  R. Skalak,et al.  Surface flow of viscoelastic membranes in viscous fluids , 1982 .

[16]  Dziuk,et al.  SURFACE FINITE ELEMENTS FOR , 2007 .

[17]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[18]  Sine-Gordon field theory for the Kosterlitz-Thouless transitions on fluctuating membranes. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Luca Giomi,et al.  Two-dimensional matter: order, curvature and defects , 2008, 0812.3064.

[20]  Nematic textures in spherical shells. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  I. Nitschke,et al.  A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.

[22]  Edriss S. Titi,et al.  The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom , 1999 .

[23]  Pingwen Zhang,et al.  Continuum theory of a moving membrane. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[25]  M. Haataja,et al.  Hydrodynamic effects on spinodal decomposition kinetics in planar lipid bilayer membranes. , 2010, The Journal of chemical physics.