Nonlinear Parametric Model Identification with Genetic Algorithms. Application to a Thermal Process

One of the first steps taken in any technological area is building a mathematical model. In fact, in the case of process control, modelling is a crucial aspect that influences quality control. Building a nonlinear model is a traditional problem. This paper illustrates how to built an accurate nonlinear model combining first principle modelling and a parametric identification, using Genetic Algorithms. All the experiments presented in this paper are designed for a thermal process.