Background modeling and subtraction of dynamic scenes

Background modeling and subtraction is a core component in motion analysis. The central idea behind such module is to create a probabilistic representation of the static scene that is compared with the current input to perform subtraction. Such approach is efficient when the scene to be modeled refers to a static structure with limited perturbation. In this paper, we address the problem of modeling dynamic scenes where the assumption of a static background is not valid. Waving trees, beaches, escalators, natural scenes with rain or snow are examples. Inspired by the work proposed by Doretto et al. (2003), we propose an on-line auto-regressive model to capture and predict the behavior of such scenes. Towards detection of events we introduce a new metric that is based on a state-driven comparison between the prediction and the actual frame. Promising results demonstrate the potentials of the proposed framework.

[1]  Richard Szeliski,et al.  Video textures , 2000, SIGGRAPH.

[2]  Xiang Gao,et al.  Error analysis of background adaption , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[3]  Mubarak Shah,et al.  A hierarchical approach to robust background subtraction using color and gradient information , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[4]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Michael Harville,et al.  A Framework for High-Level Feedback to Adaptive, Per-Pixel, Mixture-of-Gaussian Background Models , 2002, ECCV.

[6]  Naoya Ohta,et al.  A statistical approach to background subtraction for surveillance systems , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  Daniel P. Huttenlocher,et al.  Scene modeling for wide area surveillance and image synthesis , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[8]  Olaf Munkelt,et al.  Adaptive Background Estimation and Foreground Detection using Kalman-Filtering , 1995 .

[9]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[10]  Joachim M. Buhmann,et al.  Topology Free Hidden Markov Models: Application to Background Modeling , 2001, ICCV.

[11]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[12]  Kazuhiko Sumi,et al.  Background subtraction based on cooccurrence of image variations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[13]  Georgios Tziritas,et al.  Adaptive detection and localization of moving objects in image sequences , 1999, Signal Process. Image Commun..

[14]  W. Eric L. Grimson,et al.  Using adaptive tracking to classify and monitor activities in a site , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[15]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[17]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Stuart J. Russell,et al.  Image Segmentation in Video Sequences: A Probabilistic Approach , 1997, UAI.

[19]  Michael J. Black,et al.  Robust Principal Component Analysis for Computer Vision , 2001, ICCV.

[20]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[21]  Nikos Paragios,et al.  A MRF-based approach for real-time subway monitoring , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[23]  Michael J. Black,et al.  Robust principal component analysis for computer vision , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.