Status and new operation modes of the versatile VLT/NaCo

This paper aims at giving an update on the most versatile Adaptive Optics fed instrument to date, the well known and successful NACO*. Although NACO is only scheduled for about two more years† at the Very Large Telescope (VLT), it keeps on evolving with additional operation modes bringing original astronomical results. The high contrast imaging community uses it creatively as a test-bench for SPHERE‡ and other second generation planet imagers. A new visible wavefront sensor (WFS) optimized for Laser Guide Star (LGS) operations has been installed and tested, the cube mode is more and more required for frame selection on bright sources, a seeing enhancer mode (no tip/tilt correction) is now offered to provide full sky coverage and welcome all kind of extragalactic applications, etc. The Instrument Operations Team (IOT) and Paranal engineers are currently working hard at maintaining the instrument overall performances but also at improving them and offering new capabilities, providing the community with a well tuned and original instrument for the remaining time it is being used. The present contribution delivers a non-exhaustive overview of the new modes and experiments that have been carried out in the past months.

[1]  Julien Charton,et al.  LGS implementation for NAOS , 2004, SPIE Astronomical Telescopes + Instrumentation.

[2]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[3]  P. Kalas,et al.  In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century. , 2007 .

[4]  K. Menten,et al.  A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way , 2002, Nature.

[5]  Paola Amico,et al.  Direct imaging of exoplanets and brown dwarfs with the VLT: NACO pupil-stabilised Lyot coronagraphy at 4 µm , 2009 .

[6]  James Roger P. Angel,et al.  A high-contrast coronagraph for the MMT using phase apodization: design and observations at 5 microns and 2 λ/D radius , 2006, SPIE Astronomical Telescopes + Instrumentation.

[7]  Sridharan Rengaswamy,et al.  Speckle imaging with the SOAR and the very large telescopes , 2010, Astronomical Telescopes + Instrumentation.

[8]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[9]  David Mouillet,et al.  A New Lenslet Array for the NACO Laser Guide Star Wavefront Sensor , 2010 .

[10]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[11]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[12]  W. Brandner,et al.  SPATIALLY RESOLVED SPECTROSCOPY OF THE EXOPLANET HR 8799 c , 2010, 1001.2017.

[13]  R. Lenzen,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[14]  J. Angel,et al.  First On-Sky High-Contrast Imaging with an Apodizing Phase Plate* , 2007, astro-ph/0702324.

[15]  R. Lenzen,et al.  The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT - Implications for time-resolved polarimetric measurements of Sgr A* , 2010, 1010.4708.

[16]  D. Bonaccini Calia,et al.  First light of the ESO laser guide star facility , 2006, SPIE Astronomical Telescopes + Instrumentation.

[17]  J. Codona Phase Apodization Coronagraphy , 2007 .

[18]  D. Mawet,et al.  An image of an exoplanet separated by two diffraction beamwidths from a star , 2010, Nature.

[19]  D. Mouillet,et al.  A giant planet candidate near a young brown dwarf - Direct VLT/NACO observations using IR wavefront sensing , 2004 .

[20]  Gerard Rousset,et al.  NAOS + CONICA at YEPUN : First VLT Adaptive Optics System Sees First Light , 2001 .

[21]  Pierre Riaud,et al.  New observing modes of NACO , 2005 .

[22]  Pierre Kervella,et al.  The Close Circumstellar Environment of Betelgeuse: Adaptive Optics Spectro-imaging in the Near-IR with VLT/NACO , 2009, 0907.1843.

[23]  Paul Stewart,et al.  Sparse aperture masking (SAM) at NAOS/CONICA on the VLT , 2010, Astronomical Telescopes + Instrumentation.

[24]  Anne-Marie Lagrange,et al.  NAOS-CONICA first on sky results in a variety of observing modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[25]  Gerd Weigelt,et al.  VLT$/$NACO and Subaru$/$CIAO JHK-band high-resolution imaging polarimetry of the Herbig Be star R Monocerotis , 2008 .

[26]  P. Hauschildt,et al.  Evidence for a co-moving sub-stellar companion of GQ Lup , 2005, astro-ph/0503691.

[27]  A. Eckart,et al.  UvA-DARE ( Digital Academic Repository ) Polarized NIR and X-ray flares from Sagittarius A * , 2008 .

[28]  Reiner Hofmann,et al.  The Need for a General Purpose Diffraction Limited Imager at the VLT , 2009 .

[29]  David M. Shemo,et al.  Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration. , 2009, Optics express.

[30]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[31]  Danuta Dobrzycka,et al.  Quality control of VLT NACO data , 2004, SPIE Astronomical Telescopes + Instrumentation.

[32]  Ulrich Neumann,et al.  PARSEC: the laser for the VLT , 2002, SPIE Optics + Photonics.

[33]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[34]  Antoine Labeyrie,et al.  Resolved imaging of extra-solar planets with future 10 100 km optical interferometric arrays , 1996, astro-ph/9602093.

[35]  H. Levato,et al.  Charon's size and an upper limit on its atmosphere from a stellar occultation , 2006, Nature.

[36]  A. Labeyrie,et al.  The Four‐Quadrant Phase‐Mask Coronagraph. I. Principle , 2000 .