Iterative Properties of Birational Rowmotion I: Generalities and Skeletal Posets
暂无分享,去创建一个
[1] Tom Roby,et al. Iterative Properties of Birational Rowmotion II: Rectangles and Triangles , 2015, Electron. J. Comb..
[2] Frank Ruskey,et al. Generating linear extensions of posets by transpositions , 1992, J. Comb. Theory, Ser. B.
[3] Combinatorial, piecewise-linear, and birational homomesy for products of two chains , 2013, 1310.5294.
[4] Anne Schilling,et al. Combinatorial Markov chains on linear extensions , 2012, ArXiv.
[5] Gwihen Etienne. Linear extensions of finite posets and a conjecture of G. Kreweras on permutations , 1984, Discret. Math..
[6] Mark D. Haiman,et al. Dual equivalence with applications, including a conjecture of Proctor , 1992, Discret. Math..
[7] Richard P. Stanley,et al. Two poset polytopes , 1986, Discret. Comput. Geom..
[8] J. Propp,et al. Piecewise-linear and birational toggling , 2014, 1404.3455.
[9] T. Seppäläinen,et al. Geometric RSK correspondence, Whittaker functions and symmetrized random polymers , 2012, 1210.5126.
[10] Darij Grinberg,et al. The order of birational rowmotion , 2014 .
[11] Tom Roby,et al. Homomesy in Products of Two Chains , 2013, Electron. J. Comb..
[12] Dmitry Fon-Der-Flaass,et al. Orbits of Antichains in Ranked Posets , 1993, Eur. J. Comb..
[13] Alexander Schrijver,et al. On the period of an operator, defined on antichains , 1974 .
[14] Darij Grinberg,et al. Iterative properties of birational rowmotion , 2014, 1402.6178.
[15] Nathan Williams,et al. Promotion and rowmotion , 2011, Eur. J. Comb..
[16] R. Stanley. Enumerative Combinatorics: Volume 1 , 2011 .
[17] Peter J. Cameron,et al. Orbits of antichains revisited , 1995, Eur. J. Comb..