Graphene as a protein crystal mounting material to reduce background scatter.

The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects.

[1]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[2]  Elspeth Garman,et al.  'Cool' crystals: macromolecular cryocrystallography and radiation damage. , 2003, Current opinion in structural biology.

[3]  Chae Un Kim,et al.  A high-pressure cryocooling method for protein crystals and biological samples with reduced background X-ray scatter. , 2013, Journal of applied crystallography.

[4]  E Garman,et al.  Cool data: quantity AND quality. , 1999, Acta crystallographica. Section D, Biological crystallography.

[5]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[6]  H. Hope Cryocrystallography of biological macromolecules: a generally applicable method. , 1988, Acta crystallographica. Section B, Structural science.

[7]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[8]  J. Pletcher,et al.  STUDIES OF INSULIN CRYSTALS AT LOW TEMPERATURES: EFFECTS ON MOSAIC CHARACTER AND RADIATION SENSITIVITY* , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[10]  A. Neto,et al.  New directions in science and technology: two-dimensional crystals , 2011 .

[11]  Luigi Colombo,et al.  Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. , 2011, Journal of the American Chemical Society.

[12]  Daniel J. Hellebusch,et al.  High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells , 2012, Science.

[13]  References , 1971 .

[14]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[15]  A. McPherson,et al.  Structures of three crystal forms of the sweet protein thaumatin. , 1994, Acta crystallographica. Section D, Biological crystallography.

[16]  G. G. Christoph,et al.  Data collection in protein crystallography: capillary effects and background corrections , 1974 .

[17]  E. Garman,et al.  Cryocooling of macromolecular crystals: optimization methods. , 2003, Methods in enzymology.

[18]  R. Hilgenfeld,et al.  Cryocrystallography with oil – an old idea revived , 1999 .

[19]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[20]  M. Rossmann,et al.  Crystallographic studies on lactate dehydrogenase at –75°C , 1970 .

[21]  Kenneth A. Frankel,et al.  The minimum crystal size needed for a complete diffraction data set , 2010, Acta crystallographica. Section D, Biological crystallography.

[22]  Hyuck-Mo Lee,et al.  Graphene veils and sandwiches. , 2011, Nano letters.

[23]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[24]  Richard Henderson,et al.  Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  B. Matthews,et al.  Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization , 2004, Quarterly Reviews of Biophysics.

[26]  R. Gillilan,et al.  Small-angle solution scattering using the mixed-mode pixel array detector. , 2011, Journal of synchrotron radiation.

[27]  Jennifer L Wierman,et al.  Graphene as a protein crystal mounting material to reduce background scatter. , 2013, Journal of applied crystallography.

[28]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[29]  N. Mohanty,et al.  Impermeable graphenic encasement of bacteria. , 2011, Nano letters.

[30]  Elspeth F Garman,et al.  Experimental determination of the radiation dose limit for cryocooled protein crystals. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. H. Decker,et al.  Diffraction study of protein crystals grown in cryoloops and micromounts. , 2010, Journal of applied crystallography.

[32]  P. D. Kwong,et al.  Use of cryoprotectants in combination with immiscible oils for flash cooling macromolecular crystals , 1999 .

[33]  R. Ravelli,et al.  Radiation damage in macromolecular cryocrystallography. , 2006, Current opinion in structural biology.

[34]  R. Stroud,et al.  Data collection in protein crystallography: experimental methods for reducing background radiation , 1976 .