Microevolutionary genomics of bacteria.

The availability of multiple complete genome sequences from the same species can facilitate attempts to systematically address basic questions in genome evolution. We refer to such efforts as "microevolutionary genomics". We report the results of comparative analyses of complete intraspecific genome (and proteome) sequences from four bacterial species--Chlamydophila pneumoniae, Escherichia coli, Helicobacter pylori and Neisseria meningitidis. Comparisons of average synonymous (K(s)) and nonsynonymous (K(a)) substitution rates were used to assess the influence of various biological factors on the rate of protein evolution. For example, E. coli experiences the most intense purifying selection of the species analyzed, and this may be due to the relatively larger population size of this species. In addition, essential genes were shown to be more evolutionarily conserved than nonessential genes in E. coli and duplicated genes have higher rates of evolution than unique genes for all species studied except C. pneumoniae. Different functional categories of genes were shown to evolve at significantly different rates emphasizing the role of category-specific functional constraints in determining evolutionary rates. Finally, functionally characterized genes tend to be conserved between strains, while uncharacterized genes are over-represented among the unique, strain-specific genes. This suggests the possibility that nonessential genes are responsible for driving the evolutionary diversification between strains.

[1]  Michael Y. Galperin,et al.  Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea , 1997, Molecular microbiology.

[2]  Eugene V. Koonin,et al.  SEALS: A System for Easy Analysis of Lots of Sequences , 1997, ISMB.

[3]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.

[4]  N. Bianchi,et al.  Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. , 1993, Molecular biology and evolution.

[5]  A. Halpern,et al.  Large-scale comparison of fungal sequence information: mechanisms of innovation in Neurospora crassa and gene loss in Saccharomyces cerevisiae. , 2000, Genome research.

[6]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[7]  R. DeSalle,et al.  Adaptive Evolution of Genes and Genomes , 2000, Heredity.

[8]  M. Riley,et al.  Functions of the gene products of Escherichia coli , 1993, Microbiological reviews.

[9]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[10]  D C Shields,et al.  "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. , 1988, Molecular biology and evolution.

[11]  L. Duret,et al.  Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. , 2000, Molecular biology and evolution.

[12]  M. Boguski,et al.  Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D J Lipman,et al.  Lineage-specific loss and divergence of functionally linked genes in eukaryotes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[15]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[16]  J. T. Trevors,et al.  Evolution of bacterial genomes , 1997, Antonie van Leeuwenhoek.

[17]  E V Koonin,et al.  Gene order is not conserved in bacterial evolution. , 1996, Trends in genetics : TIG.

[18]  Michael Y. Galperin,et al.  Prokaryotic genomes: the emerging paradigm of genome-based microbiology. , 1997, Current opinion in genetics & development.

[19]  E V Koonin,et al.  Lineage-specific gene expansions in bacterial and archaeal genomes. , 2001, Genome research.

[20]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[21]  S. Salzberg,et al.  Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. , 2000, Science.

[22]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[23]  Michael Y. Galperin,et al.  Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. , 1999, Genome research.

[24]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[25]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[26]  W. Doolittle,et al.  Lateral genomics. , 1999, Trends in cell biology.

[27]  E. Koonin,et al.  Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. , 2002, Genome research.

[28]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[29]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[30]  N. Moran,et al.  Calibrating bacterial evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Koonin,et al.  Horizontal gene transfer in prokaryotes: quantification and classification. , 2001, Annual review of microbiology.

[32]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[33]  P Andrew Karplus,et al.  Relatedness of baculovirus and gypsy retrotransposon envelope proteins , 2001, BMC Evolutionary Biology.

[34]  D. Futuyma,et al.  Reflections on reflections: Ecology and evolutionary biology , 1986, Journal of the history of biology.

[35]  T J White,et al.  Biochemical evolution. , 1977, Annual review of biochemistry.

[36]  J. Lake,et al.  Genomic evidence for two functionally distinct gene classes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Ronald W. Davis,et al.  Comparative genomes of Chlamydia pneumoniae and C. trachomatis , 1999, Nature Genetics.

[38]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[39]  M. Hattori,et al.  Comparison of whole genome sequences of Chlamydia pneumoniae J138 from Japan and CWL029 from USA. , 2000, Nucleic acids research.

[40]  N. Grishin,et al.  From complete genomes to measures of substitution rate variability within and between proteins. , 2000, Genome research.

[41]  A. E. Hirsh,et al.  Protein dispensability and rate of evolution , 2001, Nature.

[42]  Laurence D. Hurst,et al.  Do essential genes evolve slowly? , 1999, Current Biology.

[43]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[44]  A. Kolstø,et al.  Dynamic bacterial genome organization , 1997, Molecular microbiology.

[45]  Sayaka,et al.  Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[46]  Y. Nakamura,et al.  Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[47]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[48]  B. Barrell,et al.  Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491 , 2000, Nature.

[49]  Benjamin L. King,et al.  Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori , 1999, Nature.

[50]  Kenneth H. Wolfe,et al.  Mammalian gene evolution: Nucleotide sequence divergence between mouse and rat , 1993, Journal of Molecular Evolution.

[51]  E. Koonin,et al.  Selection in the evolution of gene duplications , 2002, Genome Biology.

[52]  A. Hughes,et al.  Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. , 1993, Molecular biology and evolution.

[53]  Tomoko Ohta,et al.  Variation in synonymous substitution rates among mammalian genes and the correlation between synonymous and nonsynonymous divergences , 1995, Journal of Molecular Evolution.

[54]  N. Grishin,et al.  Genome trees constructed using five different approaches suggest new major bacterial clades , 2001, BMC Evolutionary Biology.

[55]  Eugene V Koonin,et al.  Constant relative rate of protein evolution and detection of functional diversification among bacterial, archaeal and eukaryotic proteins , 2001, Genome Biology.

[56]  J. Thompson,et al.  Using CLUSTAL for multiple sequence alignments. , 1996, Methods in enzymology.

[57]  S. Karlin,et al.  Predicted Highly Expressed Genes of Diverse Prokaryotic Genomes , 2000, Journal of bacteriology.

[58]  P. Bork,et al.  Measuring genome evolution. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  T. Ohta THE NEARLY NEUTRAL THEORY OF MOLECULAR EVOLUTION , 1992 .

[60]  W. Fitch Homology a personal view on some of the problems. , 2000, Trends in genetics : TIG.

[61]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[62]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[63]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.