Durability Issues and Status of PBI-Based Fuel Cells

[1]  Qingfeng Li,et al.  Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells , 2014 .

[2]  F Marone,et al.  Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy. , 2014, Journal of synchrotron radiation.

[3]  T. Fujigaya,et al.  Durability analysis of polymer-coated pristine carbon nanotube-based fuel cell electrocatalysts under non-humidified conditions , 2014 .

[4]  T. Fujigaya,et al.  Enhancement of Platinum Mass Activity on the Surface of Polymer-wrapped Carbon Nanotube-Based Fuel Cell Electrocatalysts , 2014, Scientific Reports.

[5]  T. Fujigaya,et al.  High‐Temperature Polymer Electrolyte Fuel Cell Using Poly(vinylphosphonic acid) as an Electrolyte Shows a Remarkable Durability , 2014 .

[6]  Ronghuan He,et al.  High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC , 2014 .

[7]  H. Ploehn,et al.  High Polymer Content 2,5‐Pyridine‐Polybenzimidazole Copolymer Membranes with Improved Compressive Properties , 2014 .

[8]  Werner Lehnert,et al.  Synchrotron X-ray radioscopic in situ study of high-temperature polymer electrolyte fuel cells - Effect of operation conditions on structure of membrane , 2014 .

[9]  Anders Kaestner,et al.  Evaluation of Neutron Imaging for Measuring Phosphoric Acid Distribution in High Temperature PEFCs , 2014 .

[10]  L. Gubler,et al.  Second Cycle Is Dead: Advanced Electrode Diagnostics for High-Temperature Polymer Electrolyte Fuel Cells , 2014 .

[11]  V. Hacker,et al.  Tungsten materials as durable catalyst supports for fuel cell electrodes , 2013 .

[12]  Yuka Oono,et al.  Prolongation of lifetime of high temperature proton exchange membrane fuel cells , 2013 .

[13]  Jens Oluf Jensen,et al.  Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes , 2013 .

[14]  W. Xing,et al.  Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions , 2013 .

[15]  A. Khokhlov,et al.  Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications , 2013, Beilstein journal of nanotechnology.

[16]  Andrea Casalegno,et al.  Degradation in phosphoric acid doped polymer fuel cells: A 6000 h parametric investigation , 2013 .

[17]  L. Cleemann,et al.  Crosslinked Hexafluoropropylidene Polybenzimidazole Membranes with Chloromethyl Polysulfone for Fuel Cell Applications , 2013 .

[18]  D. Stolten,et al.  Development of HT-PEFC stacks in the kW range , 2013 .

[19]  Woonghee Lee,et al.  Modification of electrodes using Al2O3 to reduce phosphoric acid loss and increase the performance of high-temperature proton exchange membrane fuel cells , 2013 .

[20]  K. Wippermann,et al.  Effect of Spiral Flow Field Design on Performance and Durability of HT-PEFCs , 2013 .

[21]  Srikanth Arisetty,et al.  Thermodynamics and Kinetics of Platinum Dissolution from Carbon-Supported Electrocatalysts in Aqueous Media under Potentiostatic and Potentiodynamic Conditions , 2013 .

[22]  Y. Oono,et al.  Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells , 2012 .

[23]  Hansung Kim,et al.  Electrochemical carbon corrosion in high temperature proton exchange membrane fuel cells , 2012 .

[24]  Chenxi Xu,et al.  Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells , 2012 .

[25]  D. Aili,et al.  Thermal curing of PBI membranes for high temperature PEM fuel cells , 2012 .

[26]  J. Jensen,et al.  Oxidative Degradation of Polybenzimidazole Membranes as Electrolytes for High Temperature Proton Exchange Membrane Fuel Cells , 2011 .

[27]  Jens Oluf Jensen,et al.  Crosslinking of polybenzimidazole membranes by divinylsulfone post‐treatment for high‐temperature proton exchange membrane fuel cell applications , 2011 .

[28]  T. Schmidt,et al.  Simulated start–stop as a rapid aging tool for polymer electrolyte fuel cell electrodes , 2011 .

[29]  D. Aili,et al.  Phosphoric acid doped membranes based on Nafion , PBI and their blends Membrane preparation, char , 2011 .

[30]  M. Matsumoto,et al.  Oxygen-Enhanced Dissolution of Platinum in Acidic Electrochemical Environments , 2011 .

[31]  P. Cañizares,et al.  Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole , 2011 .

[32]  Suk Woo Nam,et al.  Demonstration of a 20 W class high-temperature polymer electrolyte fuel cell stack with novel fabrication of a membrane electrode assembly , 2011 .

[33]  Christoph Hartnig,et al.  On a new degradation mode for high-temperature polymer electrolyte fuel cells: How bipolar plate degradation affects cell performance , 2011 .

[34]  Gang Zhang,et al.  Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells , 2011 .

[35]  D. Wan,et al.  Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles , 2010 .

[36]  J. Banhart,et al.  In-situ synchrotron X-ray radiography on high temperature polymer electrolyte fuel cells , 2010 .

[37]  S. A. Gürsel,et al.  High Temperature Proton Exchange Membranes for Fuel Cells by Radiation Grafting , 2010 .

[38]  Y. Oono,et al.  Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells , 2010 .

[39]  Jens Oluf Jensen,et al.  Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes , 2010 .

[40]  Mathias Schulze,et al.  A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells , 2009 .

[41]  Werner Lehnert,et al.  Redistribution of Phosphoric Acid in Membrane Electrode Assemblies for High Temperature Polymer Electrolyte Fuel Cells , 2009 .

[42]  N. M. Zagudaeva,et al.  Degradation of high temperature MEA with PBI-H3PO4 membrane in a life test , 2009 .

[43]  T. Fujigaya,et al.  Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area , 2009 .

[44]  M. Inaba Durability of Electrocatalysts in Polymer Electrolyte Fuel Cells , 2009 .

[45]  A. Reis,et al.  Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell , 2009 .

[46]  D. Wan,et al.  Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells , 2009 .

[47]  J. Scholta,et al.  Long Term Testing in Continuous Mode of HT‐PEMFC Based H3PO4/PBI Celtec‐P MEAs for μ‐CHP Applications , 2009 .

[48]  Loreto Daza,et al.  High surface area graphite as alternative support for proton exchange membrane fuel cell catalysts , 2009 .

[49]  Robert F. Savinell,et al.  High temperature proton exchange membranes based on polybenzimidazoles for fuel cells , 2009 .

[50]  Y. Oono,et al.  Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells , 2009 .

[51]  T. Fujigaya,et al.  Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure. , 2009, Small.

[52]  Jiujun Zhang,et al.  A review of accelerated stress tests of MEA durability in PEM fuel cells , 2009 .

[53]  F. Büchi,et al.  Polymer electrolyte fuel cell durability , 2009 .

[54]  Jun Shen,et al.  A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies , 2008 .

[55]  Brian C. Benicewicz,et al.  Durability Studies of PBI‐based High Temperature PEMFCs , 2008 .

[56]  Qingfeng Li,et al.  Partially Fluorinated Arylene Polyethers and Their Ternary Blend Membranes with PBI and H3PO4. Part I. Synthesis and Characterisation of Polymers and Binary Blend Membranes , 2008 .

[57]  Heli Wang,et al.  Austenitic stainless steels in high temperature phosphoric acid , 2008 .

[58]  Jürgen Mergel,et al.  Durability of ABPBI‐based MEAs for High Temperature PEMFCs at Different Operating Conditions , 2008 .

[59]  Thomas J. Schmidt,et al.  Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode , 2008 .

[60]  Jiujun Zhang,et al.  PEM fuel cell electrocatalysts and catalyst layers : fundamentals and applications , 2008 .

[61]  Jiujun Zhang,et al.  PEM Fuel Cell Electrocatalysts and Catalyst Layers , 2008 .

[62]  Brian C. Benicewicz,et al.  Polybenzimidazole/Acid Complexes as High-Temperature Membranes , 2008 .

[63]  Pablo Cañizares,et al.  Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC , 2007 .

[64]  Geping Yin,et al.  Understanding and Approaches for the Durability Issues of Pt-Based Catalysts for PEM Fuel Cell , 2007 .

[65]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[66]  Jie Yin,et al.  Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application , 2007 .

[67]  Yuyan Shao,et al.  Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges , 2007 .

[68]  Qingfeng Li,et al.  Cross-Linked Polybenzimidazole Membranes for Fuel Cells , 2007 .

[69]  Huamin Zhang,et al.  Pt4ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H3PO4 doped PBI , 2007 .

[70]  Zhigang Qi,et al.  Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells , 2006 .

[71]  T. Schmidt,et al.  Durability and Reliability in High-Temperature Reformed Hydrogen PEFCs , 2006 .

[72]  Tomoki Akita,et al.  Characteristics of a Platinum Black Catalyst Layer with Regard to Platinum Dissolution Phenomena in a Membrane Electrode Assembly , 2006 .

[73]  Deborah J. Myers,et al.  Effect of voltage on platinum dissolution : Relevance to polymer electrolyte fuel cells , 2006 .

[74]  Tomoki Akita,et al.  Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. , 2006, Physical chemistry chemical physics : PCCP.

[75]  K. Epping,et al.  VII.B.5 Development of Polybenzimidazole-Based, High-Temperature Membrane and Electrode Assemblies for Stationary Applications , 2006 .

[76]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[77]  Brian C. Benicewicz,et al.  High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .

[78]  Ping Yu,et al.  PtCo/C cathode catalyst for improved durability in PEMFCs , 2005 .

[79]  D. Stevens,et al.  Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells , 2005 .

[80]  Rodney L. Borup,et al.  Durability of PEFCs at High Humidity Conditions , 2005 .

[81]  B. Popov,et al.  Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells , 2004 .

[82]  Ronghuan He,et al.  PBI‐Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration , 2004 .

[83]  A. Taniguchi,et al.  Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation , 2004 .

[84]  T. Jarvi,et al.  Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions , 2004 .

[85]  Qingfeng Li,et al.  Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells , 2004 .

[86]  D. Wilkinson,et al.  Aging mechanisms and lifetime of PEFC and DMFC , 2004 .

[87]  T. Jarvi,et al.  Electrocatalytic corrosion of carbon support in PEMFC cathodes , 2004 .

[88]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[89]  R. Savinell,et al.  Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments , 1996 .

[90]  H. Urushibata,et al.  Effect of operational potential on performance decay rate in a phosphoric acid fuel cell , 1996 .

[91]  F. E. Karasz,et al.  Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend , 1993 .

[92]  L. Pino,et al.  A comparative analysis of structural and surface effects in the electrochemical corrosion of carbons , 1989 .

[93]  Y. Hishinuma,et al.  Acid Absorbancy of an Electrode and Its Cell Performance History , 1988 .

[94]  T. Murahashi,et al.  Change of Pt Distribution in the Active Components of Phosphoric Acid Fuel Cell , 1988 .

[95]  Y. Hishinuma,et al.  Agglomeration of Platinum Particles Supported on Carbon in Phosphoric Acid , 1988 .

[96]  A. Villari,et al.  Infrared analysis of carbon blacks , 1987 .

[97]  R. Loutfy Electrochemical characterization of carbon black , 1986 .

[98]  C. Maggiore,et al.  Use of a nuclear microprobe in the study of fuel cell electrodes , 1984 .

[99]  Ernest Yeager,et al.  Platinum Dissolution in Concentrated Phosphoric Acid , 1979 .

[100]  A. Tseung,et al.  Loss of surface area by platinum and supported platinum black electrocatalyst , 1975 .

[101]  J.A.S. Bett,et al.  Potentiodynamic analysis of surface oxides on carbon blacks , 1973 .

[102]  J.A.S. Bett,et al.  Electrochemical oxidation of carbon black in concentrated phosphoric acid at 135°C , 1973 .

[103]  R. Gaudiana,et al.  Weak‐link versus active carbon degradation routes in the oxidation of aromatic heterocyclic systems , 1969 .

[104]  E. H. Brown,et al.  Vapor Pressure of Phosphoric Acids , 1952 .

[105]  B. J. Fontana The Vapor Pressure of Water over Phosphoric Acids , 1951 .