Adaptive synchronization between different hyperchaotic systems with fully uncertain parameters

Abstract Adaptive method is an effective way to synchronize different hyperchaotic systems. This work investigates the chaos synchronization between different hyperchaotic systems with fully unknown parameters, i.e., the synchronizations between Lorenz–Stenflo (LS) system and a novel dynamical system named CYQY system, and between LS system and hyperchaotic Chen system. Based on the Lyapunov stability theory, two new adaptive controllers with corresponding parameter update laws are designed such that the different hyperchaotic systems can be synchronized asymptotically. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

[1]  Guanrong Chen,et al.  Chaos Synchronization of General Lur'e Systems via Time-Delay Feedback Control , 2003, Int. J. Bifurc. Chaos.

[2]  Mohammad Haeri,et al.  Impulsive synchronization of Chen's hyperchaotic system , 2006 .

[3]  M. T. Yassen,et al.  Synchronization hyperchaos of hyperchaotic systems , 2008 .

[4]  Ju H. Park Adaptive synchronization of Rossler system with uncertain parameters , 2005 .

[5]  Uchechukwu E. Vincent,et al.  Synchronization of identical and non-identical 4-D chaotic systems using active control , 2008 .

[6]  Tiegang Gao,et al.  Adaptive synchronization of a new hyperchaotic system with uncertain parameters , 2007 .

[7]  H. N. Agiza,et al.  Controlling chaos for the dynamical system of coupled dynamos , 2002 .

[8]  Xikui Ma,et al.  Synchronization control of cross-strict feedback hyperchaotic system based on cross active backstepping design , 2007 .

[9]  S. Ge,et al.  Adaptive synchronization of uncertain chaotic systems via backstepping design , 2001 .

[10]  Guo-Ping Jiang,et al.  A New Criterion for Chaos Synchronization Using Linear State Feedback Control , 2003, Int. J. Bifurc. Chaos.

[11]  Ming-Chung Ho,et al.  Reduced-order synchronization of chaotic systems with parameters unknown , 2006 .

[12]  Mohammad Haeri,et al.  Impulsive synchronization of different hyperchaotic (chaotic) systems , 2008 .

[13]  Xuefei Liu,et al.  Feedback and adaptive control and synchronization of a set of chaotic and hyperchaotic systems , 2007 .

[14]  Guanrong Chen,et al.  Robust adaptive synchronization of uncertain dynamical networks , 2004 .

[15]  O. Rössler An equation for hyperchaos , 1979 .

[16]  Zhenya Yan,et al.  Controlling hyperchaos in the new hyperchaotic Chen system , 2005, Appl. Math. Comput..

[17]  Zhengzhi Han,et al.  Controlling and synchronizing chaotic Genesio system via nonlinear feedback control , 2003 .

[18]  Zengqiang Chen,et al.  A novel hyperchaos system only with one equilibrium , 2007 .

[19]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.

[20]  Hao Zhang,et al.  Controlling and tracking hyperchaotic Rössler system via active backstepping design , 2005 .

[21]  Chuandong Li,et al.  Lag synchronization of hyperchaos with application to secure communications , 2005 .

[22]  M. M. El-Dessoky,et al.  Adaptive synchronization of a hyperchaotic system with uncertain parameter , 2006 .

[23]  Ruihong Li,et al.  A general method for chaos synchronization and parameters estimation between different systems , 2007 .

[24]  M. T. Yassen,et al.  Adaptive chaos control and synchronization for uncertain new chaotic dynamical system , 2006 .

[25]  Kuang-Yow Lian,et al.  Adaptive synchronization design for chaotic systems via a scalar driving signal , 2002 .

[26]  Choy Heng Lai,et al.  Bifurcation behavior of the generalized Lorenz equations at large rotation numbers , 1997 .

[27]  Leon O. Chua,et al.  Conditions for impulsive Synchronization of Chaotic and hyperchaotic Systems , 2001, Int. J. Bifurc. Chaos.

[28]  Keiji Konishi,et al.  Sliding mode control for a class of chaotic systems , 1998 .

[29]  Ming-Jyi Jang,et al.  Sliding mode control of hyperchaos in Rössler systems , 2002 .

[30]  Shihua Chen,et al.  Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification , 2005 .

[31]  Jun-an Lu,et al.  Adaptive feedback synchronization of a unified chaotic system , 2004 .

[32]  M. T. Yassen,et al.  Adaptive control and synchronization of a modified Chua's circuit system , 2003, Appl. Math. Comput..

[33]  Lennart Stenflo,et al.  Generalized Lorenz equations for acoustic-gravity waves in the atmosphere , 1996 .

[34]  Guanrong Chen,et al.  The generation and circuit implementation of a new hyper-chaos based upon Lorenz system , 2007 .

[35]  Zhang Suo-chun,et al.  Controlling uncertain Lü system using backstepping design , 2003 .

[36]  陆君安,et al.  Adaptive synchronization of hyperchaotic Lü system with uncertainty , 2007 .

[37]  Bo Wang,et al.  On the synchronization of a hyperchaotic system based on adaptive method , 2008 .

[38]  Recai Kiliç,et al.  Experimental study on impulsive synchronization between two modified Chua's circuits , 2006 .

[39]  Santo Banerjee,et al.  Chaotic Scenario in the Stenflo Equations , 2001 .

[40]  Ju H. Park Adaptive synchronization of hyperchaotic Chen system with uncertain parameters , 2005 .

[41]  Jian-an Fang,et al.  General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters , 2008 .

[42]  Yong Chen,et al.  The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems , 2008, Appl. Math. Comput..

[43]  A. Roy Chowdhury,et al.  On the application of adaptive control and phase synchronization in non-linear fluid dynamics , 2004 .

[44]  Faqiang Wang,et al.  A new criterion for chaos and hyperchaos synchronization using linear feedback control , 2006 .

[45]  Q. Jia Projective synchronization of a new hyperchaotic Lorenz system , 2007 .

[46]  Zhi-Hong Guan,et al.  Adaptive synchronization between two different hyperchaotic systems , 2008 .

[47]  H. N. Agiza,et al.  Chaos synchronization of Lü dynamical system , 2004 .

[48]  X. Shan,et al.  A linear feedback synchronization theorem for a class of chaotic systems , 2002 .