Sub sea surface temperatures in the Polar North Atlantic during the Holocene: Planktic foraminiferal Mg/Ca temperature reconstructions

Holocene sea surface temperatures in the eastern Fram Strait are reconstructed based on Mg/Ca ratios measured on the planktic foraminifer Neogloboquadrina pachyderma (sin). The reconstructed sub sea surface temperatures (sSSTMg/Ca) fluctuate markedly during the earliest Holocene at ~11.7 and 10.5 kyr BP. This is probably in response to the varying presence of sea-ice and deglacial meltwater. Between ~10.5–7.9 kyr BP, the sSSTMg/Ca values are relatively high (~4°C) and more stable reflecting high insolation and intensified poleward advection of Atlantic Water. After 7.9 kyr BP, the sSSTMg/Ca values decline to an average of ~3°C throughout the mid-Holocene. These changes can be attributed to a combined effect of reduced poleward oceanic heat advection and a decline in insolation as well as a gradually increased influence of eastward migrating Arctic Water. The sSSTMg/Ca values increase and vary between 2.1°C and 5.8°C from ~2.7 kyr BP to the present. This warming is in contrast to declining late-Holocene insolation and may instead be explained by factors including increased advection of oceanic heat to the Arctic region possibly insulated beneath a widening freshwater layer in the northern North Atlantic in conjunction with a shift in calcification season and/or depth habitat of N. pachyderma (sin).

[1]  Michael Schulz,et al.  Centennial‐to‐millennial‐scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N , 2003 .

[2]  E. Ivanova,et al.  Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing , 2011 .

[3]  R. Volkmann PLANKTIC FORAMINIFERS IN THE OUTER LAPTEV SEA AND THE FRAM STRAIT—MODERN DISTRIBUTION AND ECOLOGY , 2000 .

[4]  M. Bender,et al.  Carbon fluxes at the sediment-water interface of the deep-sea: calcium carbonate preservation. , 1981 .

[5]  Timothy T. Barrows,et al.  Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans , 2005 .

[6]  M. Hald,et al.  Arctic planktic foraminiferal assemblages: Implications for subsurface temperature reconstructions , 2012 .

[7]  J. Mangerud,et al.  Apparent Radiocarbon Ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada , 1975, Quaternary Research.

[8]  C. Buck,et al.  Marine04 Marine Radiocarbon Age Calibration, 0–26 Cal Kyr Bp , 2004, Radiocarbon.

[9]  M. Hald,et al.  Lateglacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic , 2007 .

[10]  N. Shackleton Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial , 1974 .

[11]  T. L. Rasmussen,et al.  Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP , 2007, Quaternary Research.

[12]  A. Gregoriades,et al.  Assessing the reliability of socio‐technical systems , 2002 .

[13]  Wolfgang H Berger,et al.  The South Atlantic: Present and Past Circulation , 1996 .

[14]  Thomas M. Marchitto,et al.  Enhanced Modern Heat Transfer to the Arctic by Warm Atlantic Water , 2011, Science.

[15]  M. Hald,et al.  Early Holocene cooling events in Malangenfjord and the adjoining shelf, north-east Norwegian Sea , 2002 .

[16]  T. Hopkins The GIN Sea—A synthesis of its physical oceanography and literature review 1972–1985 , 1991 .

[17]  J. Matthiessen,et al.  A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000yr , 2001 .

[18]  J. Piechura,et al.  The West Spitsbergen Current volume and heat transport from synoptic observations in summer , 2005 .

[19]  G. P. Lohmann,et al.  Incorporation and preservation of Mg in Globigerinoides sacculifer: implications for reconstructing the temperature and 18O/16O of seawater , 2000 .

[20]  N. Koç,et al.  A high‐resolution diatom record of late‐Quaternary sea‐surface temperatures and oceanographic conditions from the eastern Norwegian Sea , 2002 .

[21]  M. Hald,et al.  Early Preboreal cooling in the Nordic seas region triggered by meltwater , 1998 .

[22]  J. Mangerud,et al.  Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic , 2006 .

[23]  N. Nakicenovic,et al.  Summary for policymakers , 1963 .

[24]  M. Vautravers,et al.  The relationship between shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera , 2002 .

[25]  E. Jansen,et al.  A high‐resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas , 2003 .

[26]  E. Jansen,et al.  Environmental changes off North Iceland during the deglaciation and the Holocene: foraminifera, diatoms and stable isotopes , 2004 .

[27]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[28]  R. Huber,et al.  Recent and Pleistocene carbonate dissolution in sediments of the Norwegian–Greenland Sea , 2000 .

[29]  E. Boyle Manganese carbonate overgrowths on foraminifera tests , 1983 .

[30]  M. Moros,et al.  A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms , 2004 .

[31]  Caitlin E. Buck,et al.  Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP , 2004, Radiocarbon.

[32]  S. Østerhus,et al.  North Atlantic–Nordic Seas exchanges , 2000 .

[33]  B. Vinther,et al.  Early Holocene climate oscillations recorded in three Greenland ice cores , 2007 .

[34]  M. Chapman,et al.  Centennial‐scale Holocene North Atlantic surface temperatures from Mg/Ca ratios in Globigerina bulloides , 2008 .

[35]  K. Kohfeld,et al.  Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments , 1996 .

[36]  J. Hurrell Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation , 1995, Science.

[37]  T. Manley Branching of Atlantic Water within the Greenland‐Spitsbergen Passage: An estimate of recirculation , 1995 .

[38]  N. Anderson,et al.  Variability of the North Atlantic Oscillation over the past 5,200 years , 2012 .

[39]  T. L. Rasmussen,et al.  Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: Evidence from the northern Svalbard continental margin, 80°N , 2005 .

[40]  J. Andrews,et al.  Preboreal oscillation caused by a glacial Lake Agassiz flood , 2002 .

[41]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[42]  G. Cortese,et al.  A high-resolution radiolarian-derived paleotemperature record for the Late Pleistocene-Holocene in the Norwegian Sea , 2002 .

[43]  D. Lea,et al.  Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing , 1999 .

[44]  R. Bourke,et al.  The westward turning branch of the West Spitsbergen Current , 1988 .

[45]  Fred Godtliebsen,et al.  Foraminiferal faunal evidence of twentieth-century Barents Sea warming , 2011 .

[46]  P. Winsor,et al.  The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current : results from the Arctic Ocean-02 Oden expedition , 2005 .

[47]  A. Jennings,et al.  New spatial Mg/Ca‐temperature calibrations for three Arctic, benthic foraminifera and reconstruction of north Iceland shelf temperature for the past 4000 years , 2007 .

[48]  E. Jansen,et al.  A high‐resolution diatom record of the last deglaciation from the SE Norwegian Sea: Documentation of rapid climatic changes , 1992 .

[49]  M. Rundgren,et al.  The Preboreal oscillation around the Nordic Seas : Terrestrial and lacustrine responses , 1997 .

[50]  H. Elderfield,et al.  Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg‐dependent dissolution , 1996 .

[51]  Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean , 2010 .

[52]  E. Jansen,et al.  Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on diatoms , 1993 .

[53]  M. Hald,et al.  Rapid climatic shifts of the northern Norwegian Sea during the last deglaciation and the Holocene , 1997 .

[54]  E. Fahrbach,et al.  Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements , 2004 .

[55]  Robert F Spielhagen,et al.  Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka - multiproxy evidence for a two-phase Holocene , 2013 .

[56]  M. Schulz,et al.  Improving temperature estimates derived from Mg/Ca of planktonic foraminifera using X‐ray computed tomography–based dissolution index, XDX , 2011 .

[57]  P. Reimer,et al.  CALIB 5.0.2 [WWW program and documentation] , 2005 .

[58]  S. Dahl,et al.  Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norvay, based on glaciolacustrine sediment records , 2001 .

[59]  J. Andrews,et al.  Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records , 2009 .

[60]  T. L. Rasmussen,et al.  Paleoceanographic changes and calcium carbonate dissolution in the central Fram Strait during the last 20 ka , 2012, Quaternary Research.

[61]  M. Sarnthein,et al.  Paired δ18O signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas , 2003 .

[62]  D. Archer,et al.  Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results , 1989 .

[63]  A. Watson,et al.  Transports of Nordic Seas water masses and excess SF6 through Fram Strait to the Arctic Ocean , 2008 .

[64]  C. Buck,et al.  IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP , 2009, Radiocarbon.

[65]  Edward A. Boyle,et al.  Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years : changes in deep ocean circulation and chemical inventories , 1985 .

[66]  T. Marchitto Precise multielemental ratios in small foraminiferal samples determined by sector field ICP‐MS , 2006 .

[67]  André Berger,et al.  Insolation values for the climate of the last 10 , 1991 .

[68]  H. Elderfield,et al.  A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry , 2003 .

[69]  Ruediger Stein,et al.  Holocene cooling culminates in sea ice oscillations in Fram Strait , 2012 .

[70]  M. Weinelt,et al.  Reassessing Mg/Ca temperature calibrations of Neogloboquadrina pachyderma (sinistral) using paired δ44/40Ca and Mg/Ca measurements , 2009 .

[71]  C. Hemleben,et al.  Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures , 1996 .

[72]  R. Telford,et al.  Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene , 2007 .

[73]  Y. Rosenthal,et al.  Chemical Hydrography of the South Atlantic During the Last Glacial Maximum: Cd vs. δ13C , 1996 .

[74]  H. Elderfield,et al.  Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios , 2000, Nature.

[75]  F. Godtliebsen,et al.  Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin , 2004 .