Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae
暂无分享,去创建一个
[1] L. Gustafsson,et al. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation , 1996, Applied and environmental microbiology.
[2] P. Barré,et al. Modulation of Glycerol and Ethanol Yields During Alcoholic Fermentation in Saccharomyces cerevisiae Strains Overexpressed or Disrupted for GPD1 Encoding Glycerol 3‐Phosphate Dehydrogenase , 1997, Yeast.
[3] Carl Johan Franzén,et al. An Experimental Guide to the Relevant Aeration Rates in Microaerobic Bioprocesses , 1994 .
[4] G. Lidén,et al. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae , 1997, Applied and environmental microbiology.
[5] A. Blomberg,et al. Physiology of osmotolerance in fungi. , 1992, Advances in microbial physiology.
[6] K. Larsson,et al. A gene encoding sn‐glycerol 3‐phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae , 1993, Molecular microbiology.
[7] L. Adler,et al. Osmoregulation in Saccharomyces cerevisiae Studies on the osmotic induction of glycerol production and glycerol 3‐phosphate dehydrogenase (NAD+) , 1991, FEBS letters.
[8] A. Blomberg,et al. Cloning and characterization of GPD2, a second gene encoding sn‐glycerol 3‐phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1 , 1995, Molecular microbiology.
[9] J M Thevelein,et al. The two isoenzymes for yeast NAD+‐dependent glycerol 3‐phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation , 1997, The EMBO journal.
[10] L. Gustafsson,et al. Chapter 7 - Calorimetry of Microbial Processes , 1999 .
[11] Anders Blomberg,et al. Purification and Characterization of Two Isoenzymes of DL-Glycerol-3-phosphatase from Saccharomyces cerevisiae , 1996, The Journal of Biological Chemistry.
[12] W. A. Scheffers,et al. Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. , 1990, Journal of general microbiology.
[13] J M Thevelein,et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway , 1994, Molecular and cellular biology.
[14] L. Gustafsson,et al. The importance of the glycerol 3‐phosphate shuttle during aerobic growth of Saccharomyces cerevisiae , 1998, Yeast.