Finding solutions to NP problems: philosophical differences between quantum and evolutionary search algorithms

This paper uses instances of SAT, 3SAT and TSP to describe how evolutionary search (running on a classical computer) differs from quantum search (running on a quantum computer) for solving NP problems.

[1]  Jr.,et al.  A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation , 2000, quant-ph/0007045.

[2]  J. Preskill Quantum computing: pro and con , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[4]  Eleanor G. Rieffel,et al.  J an 2 00 0 An Introduction to Quantum Computing for Non-Physicists , 2002 .

[5]  Adriano Barenco QUANTUM COMPUTATION: AN INTRODUCTION , 1998 .

[6]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[7]  Thomas Bäck,et al.  A Superior Evolutionary Algorithm for 3-SAT , 1998, Evolutionary Programming.

[8]  V. Cerny Quantum computers and intractable (NP-complete) computing problems. , 1993 .

[9]  Masanori Ohya,et al.  NP Problem in Quantum Algorithm , 1998 .

[10]  Peter L. Knight,et al.  Quantum Information Processing Without Entanglement , 2000, Science.

[11]  P. Dirac Principles of Quantum Mechanics , 1982 .

[12]  Udi Manber,et al.  Introduction to algorithms , 1989 .

[13]  L. K. Grover,et al.  Quantum mechanical searching , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[14]  Donald D. Fitts,et al.  Principles of Quantum Mechanics: Angular momentum , 1999 .

[15]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[16]  Cern Quantum computers and intractable (NP-complete) computing problems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[17]  Samuel L. Braunstein,et al.  Speed-up and entanglement in quantum searching , 2002, Quantum Inf. Comput..

[18]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[19]  Richard J. Fitzgerald What Really Gives a Quantum Computer Its Power , 2000 .

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  Tad Hogg Quantum Computing and Phase Transitions in Combinatorial Search , 1996, J. Artif. Intell. Res..

[22]  John J. Grefenstette,et al.  Proportional selection and sampling algorithms , 1997 .

[23]  RieffelEleanor,et al.  An introduction to quantum computing for non-physicists , 2000 .

[24]  Vlatko Vedral,et al.  Basics of quantum computation , 1998, quant-ph/9802065.

[25]  A. Berthiaume Quantum computation , 1998 .

[26]  Zbigniew Michalewicz,et al.  Inver-over Operator for the TSP , 1998, PPSN.

[27]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[28]  H. S. Allen The Quantum Theory , 1928, Nature.

[29]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[30]  Seth Lloyd Quantum search without entanglement , 1999 .

[31]  T. Spiller,et al.  Quantum information processing: cryptography, computation, and teleportation , 1996, Proc. IEEE.

[32]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  I. Walmsley,et al.  Quantum Information Science , 2002 .

[34]  D. Aharonov Quantum Computation , 1998, quant-ph/9812037.

[35]  Lov K. Grover,et al.  Nested quantum search and structured problems , 1998, quant-ph/9806078.

[36]  R. Feynman Simulating physics with computers , 1999 .