Asymptotic teleportation scheme as a universal programmable quantum processor.

We consider a scheme of quantum teleportation where a receiver has multiple (N) output ports and obtains the teleported state by merely selecting one of the N ports according to the outcome of the sender's measurement. We demonstrate that such teleportation is possible by showing an explicit protocol where N pairs of maximally entangled qubits are employed. The optimal measurement performed by a sender is the square-root measurement, and a perfect teleportation fidelity is asymptotically achieved for a large N limit. Such asymptotic teleportation can be utilized as a universal programmable processor.

[1]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[2]  Osamu Hirota,et al.  Square-root measurement for quantum symmetric mixed state signal , 2003, IEEE Trans. Inf. Theory.

[3]  M. Dušek,et al.  Universal measurement apparatus controlled by quantum software. , 2002, Physical review letters.

[4]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[5]  M. Lewenstein,et al.  Separability and entanglement of composite quantum systems , 1997, quant-ph/9707043.

[6]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[7]  M. Izutsu,et al.  Quantum channels showing superadditivity in classical capacity , 1998, quant-ph/9801012.

[8]  V. Buzek,et al.  Approximate programmable quantum processors , 2005, quant-ph/0510161.

[9]  Masashi Ban,et al.  Optimum measurements for discrimination among symmetric quantum states and parameter estimation , 1997 .

[10]  J. Cirac,et al.  Storing quantum dynamics in quantum states: a stochastic programmable gate. , 2001, Physical review letters.

[11]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[12]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[13]  G. D’Ariano,et al.  Efficient universal programmable quantum measurements. , 2004, Physical review letters.

[14]  William K. Wootters,et al.  A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .

[15]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[16]  Yonina C. Eldar,et al.  Optimal detection of symmetric mixed quantum states , 2004, IEEE Transactions on Information Theory.

[17]  Yonina C. Eldar,et al.  Designing optimal quantum detectors via semidefinite programming , 2003, IEEE Trans. Inf. Theory.

[18]  J D Franson,et al.  High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.

[19]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[20]  Vladimir Buzek,et al.  Probabilistic programmable quantum processors with multiple copies of program states , 2005 .

[21]  Christoph Simon,et al.  Probabilistic instantaneous quantum computation , 2003 .