Asymptotic teleportation scheme as a universal programmable quantum processor.
暂无分享,去创建一个
[1] M. Horodecki,et al. General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.
[2] Osamu Hirota,et al. Square-root measurement for quantum symmetric mixed state signal , 2003, IEEE Trans. Inf. Theory.
[3] M. Dušek,et al. Universal measurement apparatus controlled by quantum software. , 2002, Physical review letters.
[4] I. Chuang,et al. Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.
[5] M. Lewenstein,et al. Separability and entanglement of composite quantum systems , 1997, quant-ph/9707043.
[6] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[7] M. Izutsu,et al. Quantum channels showing superadditivity in classical capacity , 1998, quant-ph/9801012.
[8] V. Buzek,et al. Approximate programmable quantum processors , 2005, quant-ph/0510161.
[9] Masashi Ban,et al. Optimum measurements for discrimination among symmetric quantum states and parameter estimation , 1997 .
[10] J. Cirac,et al. Storing quantum dynamics in quantum states: a stochastic programmable gate. , 2001, Physical review letters.
[11] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[12] D. Vernon. Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.
[13] G. D’Ariano,et al. Efficient universal programmable quantum measurements. , 2004, Physical review letters.
[14] William K. Wootters,et al. A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .
[15] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[16] Yonina C. Eldar,et al. Optimal detection of symmetric mixed quantum states , 2004, IEEE Transactions on Information Theory.
[17] Yonina C. Eldar,et al. Designing optimal quantum detectors via semidefinite programming , 2003, IEEE Trans. Inf. Theory.
[18] J D Franson,et al. High-fidelity quantum logic operations using linear optical elements. , 2002, Physical review letters.
[19] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[20] Vladimir Buzek,et al. Probabilistic programmable quantum processors with multiple copies of program states , 2005 .
[21] Christoph Simon,et al. Probabilistic instantaneous quantum computation , 2003 .