Target‐driven cloud evolution using position‐based fluids

To effectively control particle‐based cloud evolution without imposing strict position constraints, we propose a novel method integrating a control force field and a phase transition control into the position‐based fluids (PBF) framework. To produce realistic cloud simulation, we incorporate both fluid dynamics and thermodynamics to govern cloud particle movement. The fluid dynamics is simulated through our novel driving and damping force terms. As these terms are only formulated based on cloud particle density and position, they simplify the inputs and make our method free from artificial positional constraints. The thermodynamics is implemented by our phase transition control, which can effectively simulate cloud evolution between discrepant initial and target shapes, producing plausible results. Uniquely, our method can also support target shape change during cloud simulation. Experiment results have demonstrated our method surpasses existing methods.

[1]  Ulrich Rüde,et al.  Detail-preserving fluid control , 2006, Symposium on Computer Animation.

[2]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[3]  Mark J. Harris Real-time cloud simulation and rendering , 2005, SIGGRAPH Courses.

[4]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[5]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[6]  Lihua You,et al.  A unified smoke control method based on signed distance field , 2013, Comput. Graph..

[7]  Greg Turk,et al.  Controlling liquids using meshes , 2012, SCA '12.

[8]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[9]  Yoshinori Dobashi,et al.  Adaptive cloud simulation using position based fluids , 2015, Comput. Animat. Virtual Worlds.

[10]  L. R. Koenig,et al.  A Short Course in Cloud Physics , 1979 .

[11]  Yoshinori Dobashi,et al.  Feedback control of cumuliform cloud formation based on computational fluid dynamics , 2008, ACM Trans. Graph..

[12]  Gang Feng,et al.  Detail‐preserving SPH fluid control with deformation constraints , 2018, Comput. Animat. Virtual Worlds.

[13]  Matthias Teschner,et al.  An Implicit SPH Formulation for Incompressible Linearly Elastic Solids , 2018, Comput. Graph. Forum.

[14]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[15]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[16]  Shuai Zhang,et al.  Position-based fluid control , 2015, I3D.

[17]  Adrien Treuille,et al.  Keyframe control of smoke simulations , 2003, ACM Trans. Graph..

[18]  Prashant Goswami,et al.  Real-time Landscape-size Convective Clouds Simulation and Rendering , 2016, VRIPHYS.

[19]  Yizhou Yu,et al.  Taming liquids for rapidly changing targets , 2005, SCA '05.

[20]  Chang-Hun Kim,et al.  Controlling fluid animation with geometric potential , 2004, Comput. Animat. Virtual Worlds.

[21]  Dani Lischinski,et al.  Target-driven smoke animation , 2004, ACM Trans. Graph..

[22]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[23]  Bo Ren,et al.  Fluid directed rigid body control using deep reinforcement learning , 2018, ACM Trans. Graph..

[24]  Zhaohui Wu,et al.  Target Temperature Driven Dynamic Flame Animation , 2015, Eurographics.

[25]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[26]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[27]  Yoshinori Dobashi,et al.  Simulation of Cumuliform Clouds Based on Computational Fluid Dynamics , 2002, Eurographics.

[28]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[29]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.

[30]  Matthias Teschner,et al.  IISPH‐FLIP for incompressible fluids , 2014, Comput. Graph. Forum.

[31]  Jan Bender,et al.  An hp-Adaptive Discretization Algorithm for Signed Distance Field Generation , 2017, IEEE Trans. Vis. Comput. Graph..

[32]  Kei Iwasaki,et al.  Visual simulation of clouds , 2017, Vis. Informatics.

[33]  Qinping Zhao,et al.  Modelling Cumulus Cloud Shape from a Single Image , 2014, Comput. Graph. Forum.

[34]  Petr Man Generating and Real-Time Rendering of Clouds , 2006 .

[35]  Marie-Paule Cani,et al.  Rapid sketch modeling of clouds , 2008, SBM'08.

[36]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[37]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[38]  David Mould,et al.  Target particle control of smoke simulation , 2013, Graphics Interface.

[39]  Y GardnerGeoffrey Visual simulation of clouds , 1985 .

[40]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[41]  内海 孝信,et al.  私の留学体験記 The University of North Carolina at Chapel Hill , 2019 .

[42]  Dinesh Manocha,et al.  Efficient Optimal Control of Smoke using Spacetime Multigrid , 2016, ArXiv.

[43]  Christopher Horvath Mass Preserving Multi-Scale SPH , 2013 .

[44]  Edwin Kessler,et al.  On the continuity and distribution of water substance in atmospheric circulations , 1995 .

[45]  Martin Servin,et al.  Constraint Fluids , 2012, IEEE Transactions on Visualization and Computer Graphics.