Double-Helix Supramolecular Nanofibers Assembled from Negatively Curved Nanographenes.

The layered structures of graphite and related nanographene molecules play key roles in their physical and electronic functions. However, the stacking modes of negatively curved nanographenes remain unclear, owing to the lack of suitable nanographene molecules. Herein, we report the synthesis and one-dimensional supramolecular self-assembly of negatively curved nanographenes without any assembly-assisting substituents. This curved nanographene self-assembles in various organic solvents and acts as an efficient gelator. The formation of nanofibers was confirmed by microscopic measurements, and an unprecedented double-helix assembly by continuous π-π stacking was uncovered by three-dimensional electron crystallography. This work not only reports the discovery of an all-sp2-carbon supramolecular π-organogelator with negative curvature but also demonstrates the power of three-dimensional electron crystallography for the structural determination of submicrometer-sized molecular alignment.

[1]  K. Yonekura,et al.  Collecting large datasets of rotational electron diffraction with ParallEM and SerialEM , 2020, bioRxiv.

[2]  T. Ishikawa,et al.  A new cryo-EM system for single particle analysis. , 2019, Journal of structural biology.

[3]  K. Hirata,et al.  KAMO: towards automated data processing for microcrystals , 2018, Acta crystallographica. Section D, Structural biology.

[4]  T. Fukushima,et al.  Supramolecular scaffolds enabling the controlled assembly of functional molecular units , 2018, Chemical science.

[5]  G. Sheldrick SHELXT – Integrated space-group and crystal-structure determination , 2015, Acta crystallographica. Section A, Foundations and advances.

[6]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[7]  S. Iwata,et al.  Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography , 2012, Acta crystallographica. Section D, Biological crystallography.

[8]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[9]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[10]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[11]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[12]  A. Hirsch The era of carbon allotropes. , 2010, Nature materials.

[13]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[14]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[15]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[16]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[17]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[18]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[19]  Paul N. Devine,et al.  Facile synthesis of 2-bromo-3-fluorobenzonitrile: an application and study of the halodeboronation of aryl boronic acids. , 2004, The Journal of organic chemistry.

[20]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[21]  K. Müllen,et al.  Columnar mesophases of alkylated hexa-peri-hexabenzocoronenes with remarkably large phase widths , 1996 .

[22]  P. Emsley,et al.  High-resolution structure of a retroviral protease folded as a monomer , 2011, Acta Crystallographica Section D: Biological Crystallography.