A stress invariant based spectral method to estimate fatigue life under multiaxial random loading

Abstract The present paper aims to propose a frequency-domain formulation of a stress invariant based multiaxial fatigue criterion, called “Projection by Projection” (PbP) approach, suitable for estimating fatigue life in presence of complex multiaxial loadings. The new proposed spectral method is first validated with experimental data from the literature, concerning bending-torsion random loading, showing a general accuracy. Numerical simulations are next used to generate a wide set of bending-torsion random loading with different correlation degrees, variance ratios and frequency content, in order to further validate the new proposed method. Simulations confirm a general quite good accuracy for PbP spectral method and also emphasize its better precision compared to another spectral method, namely the equivalent von Mises stress approach, developed by Preumont and co-workers.

[1]  André Preumont,et al.  Méthodes spectrales pour une analyse en fatigue des structures métalliques sous chargements aléatoires multiaxiaux , 2001 .

[2]  Mauro Filippini,et al.  A comparative study of multiaxial high-cycle fatigue criteria for metals , 1997 .

[3]  Roberto Tovo,et al.  Frequency‐based fatigue analysis of non‐stationary switching random loads , 2007 .

[4]  Andrea Bernasconi,et al.  Efficiency of algorithms for shear stress amplitude calculation in critical plane class fatigue criteria , 2005 .

[5]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[6]  Andrea Carpinteri,et al.  Biaxial/Multiaxial fatigue and fracture , 2003 .

[7]  T. P. Trigo,et al.  Fatigue assessment of mechanical components under complex multiaxial loading , 2003 .

[8]  Adam Niesłony,et al.  Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method , 2010 .

[9]  Torgeir Moan,et al.  Frequency-domain fatigue analysis of wide-band stationary Gaussian processes using a trimodal spectral formulation , 2008 .

[10]  Ewald Macha,et al.  Fatigue lives of 18G2A and 10HNAP steels under variable amplitude and random non-proportional bending with torsion loading , 2008 .

[11]  D. Benasciutti,et al.  Spectral methods for lifetime prediction under wide-band stationary random processes , 2005 .

[12]  Thomas L. Paez,et al.  The history of random vibrations through 1958 , 2006 .

[13]  Daniel J. Segalman,et al.  AN EFFICIENT METHOD FOR CALCULATING R.M.S. VON MISES STRESS IN A RANDOM VIBRATION ENVIRONMENT , 2000 .

[14]  S. Sarkani,et al.  Stochastic analysis of structural and mechanical vibrations , 1996 .

[15]  Roberto Tovo,et al.  Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes , 2006 .

[16]  Ewald Macha,et al.  Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading , 2005 .

[17]  Adam Niesłony,et al.  Spectral Method in Multiaxial Random Fatigue , 2007 .

[18]  Roberto Tovo,et al.  On fatigue cycle distribution in non-stationary switching loadings with Markov chain structure , 2010 .

[19]  Andrea Bernasconi,et al.  Efficient algorithms for calculation of shear stress amplitude and amplitude of the second invariant of the stress deviator in fatigue criteria applications , 2002 .

[20]  Andrea Carpinteri,et al.  Expected principal stress directions under multiaxial random loading. Part I: theoretical aspects of the weight function method , 1999 .

[21]  D. A. Nethercot,et al.  Designer's guide to EN 1993-1-1 : Eurocode 3: Design of Steel Structures : General Rules and Rules for Buildings /L. Gardner and D. A. Nethercot , 2005 .

[22]  E. Macha,et al.  Critical Planes Orientations in Multiaxial Fatigue of Materials , 2005 .

[23]  Bin Li,et al.  A Procedure for Fast Evaluation of High-Cycle Fatigue Under Multiaxial Random Loading , 2002 .

[24]  Thomas R. Chase,et al.  Multiaxial cycle counting for critical plane methods , 2003 .

[25]  André Preumont,et al.  Predicting random high-cycle fatigue life with finite elements , 1994 .

[26]  Luca Susmel,et al.  A stress invariant based criterion to estimate fatigue damage under multiaxial loading , 2008 .

[27]  André Preumont,et al.  Spectral methods for multiaxial random fatigue analysis of metallic structures , 2000 .

[28]  Roberto Tovo,et al.  On fatigue damage assessment in bimodal random processes , 2007 .

[29]  M. D. Paola,et al.  Digital simulation of wind field velocity , 1998 .

[30]  Masanobu Shinozuka,et al.  Simulation of Multivariate and Multidimensional Random Processes , 1971 .

[31]  André Preumont,et al.  Spectral methods to estimate local multiaxial fatigue failure for structures undergoing random vibrations , 2001 .

[32]  Soon-Bok Lee,et al.  A critical review on multiaxial fatigue assessments of metals , 1996 .

[33]  C. M. Sonsino,et al.  Fatigue testing under variable amplitude loading , 2007 .